This file is indexed.

/usr/share/pyshared/sklearn/qda.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""
Quadratic Discriminant Analysis
"""

# Author: Matthieu Perrot <matthieu.perrot@gmail.com>
#
# License: BSD 3 clause

import warnings

import numpy as np

from .base import BaseEstimator, ClassifierMixin
from .externals.six.moves import xrange
from .utils.fixes import unique
from .utils import check_arrays, array2d, column_or_1d

__all__ = ['QDA']


class QDA(BaseEstimator, ClassifierMixin):
    """
    Quadratic Discriminant Analysis (QDA)

    A classifier with a quadratic decision boundary, generated
    by fitting class conditional densities to the data
    and using Bayes' rule.

    The model fits a Gaussian density to each class.

    Parameters
    ----------
    priors : array, optional, shape = [n_classes]
        Priors on classes

    reg_param : float, optional
        Regularizes the covariance estimate as
        ``(1-reg_param)*Sigma + reg_param*np.eye(n_features)``

    Attributes
    ----------
    `covariances_` : list of array-like, shape = [n_features, n_features]
        Covariance matrices of each class.

    `means_` : array-like, shape = [n_classes, n_features]
        Class means.

    `priors_` : array-like, shape = [n_classes]
        Class priors (sum to 1).

    `rotations_` : list of arrays
        For each class an array of shape [n_samples, n_samples], the
        rotation of the Gaussian distribution, i.e. its principal axis.

    `scalings_` : array-like, shape = [n_classes, n_features]
        Contains the scaling of the Gaussian
        distributions along the principal axes for each
        class, i.e. the variance in the rotated coordinate system.

    Examples
    --------
    >>> from sklearn.qda import QDA
    >>> import numpy as np
    >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    >>> y = np.array([1, 1, 1, 2, 2, 2])
    >>> clf = QDA()
    >>> clf.fit(X, y)
    QDA(priors=None, reg_param=0.0)
    >>> print(clf.predict([[-0.8, -1]]))
    [1]

    See also
    --------
    sklearn.lda.LDA: Linear discriminant analysis
    """

    def __init__(self, priors=None, reg_param=0.):
        self.priors = np.asarray(priors) if priors is not None else None
        self.reg_param = reg_param

    def fit(self, X, y, store_covariances=False, tol=1.0e-4):
        """
        Fit the QDA model according to the given training data and parameters.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.

        y : array, shape = [n_samples]
            Target values (integers)

        store_covariances : boolean
            If True the covariance matrices are computed and stored in the
            `self.covariances_` attribute.
        """
        X, y = check_arrays(X, y)
        y = column_or_1d(y, warn=True)
        self.classes_, y = unique(y, return_inverse=True)
        n_samples, n_features = X.shape
        n_classes = len(self.classes_)
        if n_classes < 2:
            raise ValueError('y has less than 2 classes')
        if self.priors is None:
            self.priors_ = np.bincount(y) / float(n_samples)
        else:
            self.priors_ = self.priors

        cov = None
        if store_covariances:
            cov = []
        means = []
        scalings = []
        rotations = []
        for ind in xrange(n_classes):
            Xg = X[y == ind, :]
            meang = Xg.mean(0)
            means.append(meang)
            Xgc = Xg - meang
            # Xgc = U * S * V.T
            U, S, Vt = np.linalg.svd(Xgc, full_matrices=False)
            rank = np.sum(S > tol)
            if rank < n_features:
                warnings.warn("Variables are collinear")
            S2 = (S ** 2) / (len(Xg) - 1)
            S2 = ((1 - self.reg_param) * S2) + self.reg_param
            if store_covariances:
                # cov = V * (S^2 / (n-1)) * V.T
                cov.append(np.dot(S2 * Vt.T, Vt))
            scalings.append(S2)
            rotations.append(Vt.T)
        if store_covariances:
            self.covariances_ = cov
        self.means_ = np.asarray(means)
        self.scalings_ = np.asarray(scalings)
        self.rotations_ = rotations
        return self

    @property
    def scalings(self):  # pragma: no cover
        warnings.warn("QDA.scalings is deprecated and will be removed in 0.15."
                      " Use QDA.scalings_ instead.", DeprecationWarning,
                      stacklevel=2)
        return self.scalings_

    @property
    def rotations(self):  # pragma: no cover
        warnings.warn("QDA.rotations is deprecated and will be removed in "
                      "0.15. Use QDA.rotations_ instead.", DeprecationWarning,
                      stacklevel=2)
        return self.rotations_

    def _decision_function(self, X):
        X = array2d(X)
        norm2 = []
        for i in range(len(self.classes_)):
            R = self.rotations_[i]
            S = self.scalings_[i]
            Xm = X - self.means_[i]
            X2 = np.dot(Xm, R * (S ** (-0.5)))
            norm2.append(np.sum(X2 ** 2, 1))
        norm2 = np.array(norm2).T   # shape = [len(X), n_classes]
        return (-0.5 * (norm2 + np.sum(np.log(self.scalings_), 1))
                + np.log(self.priors_))

    def decision_function(self, X):
        """Apply decision function to an array of samples.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Array of samples (test vectors).

        Returns
        -------
        C : array, shape = [n_samples, n_classes] or [n_samples,]
            Decision function values related to each class, per sample.
            In the two-class case, the shape is [n_samples,], giving the
            log likelihood ratio of the positive class.
        """
        dec_func = self._decision_function(X)
        # handle special case of two classes
        if len(self.classes_) == 2:
            return dec_func[:, 1] - dec_func[:, 0]
        return dec_func

    def predict(self, X):
        """Perform classification on an array of test vectors X.

        The predicted class C for each sample in X is returned.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        C : array, shape = [n_samples]
        """
        d = self._decision_function(X)
        y_pred = self.classes_.take(d.argmax(1))
        return y_pred

    def predict_proba(self, X):
        """Return posterior probabilities of classification.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Array of samples/test vectors.

        Returns
        -------
        C : array, shape = [n_samples, n_classes]
            Posterior probabilities of classification per class.
        """
        values = self._decision_function(X)
        # compute the likelihood of the underlying gaussian models
        # up to a multiplicative constant.
        likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis])
        # compute posterior probabilities
        return likelihood / likelihood.sum(axis=1)[:, np.newaxis]

    def predict_log_proba(self, X):
        """Return posterior probabilities of classification.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Array of samples/test vectors.

        Returns
        -------
        C : array, shape = [n_samples, n_classes]
            Posterior log-probabilities of classification per class.
        """
        # XXX : can do better to avoid precision overflows
        probas_ = self.predict_proba(X)
        return np.log(probas_)