This file is indexed.

/usr/share/pyshared/sklearn/preprocessing/label.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Olivier Grisel <olivier.grisel@ensta.org>
#          Andreas Mueller <amueller@ais.uni-bonn.de>
# License: BSD 3 clause

import numpy as np

from ..base import BaseEstimator, TransformerMixin

from ..utils.fixes import unique
from ..utils import deprecated, column_or_1d

from ..utils.multiclass import unique_labels
from ..utils.multiclass import type_of_target

from ..externals import six

zip = six.moves.zip
map = six.moves.map

__all__ = [
    'label_binarize',
    'LabelBinarizer',
    'LabelEncoder',
]


class LabelEncoder(BaseEstimator, TransformerMixin):
    """Encode labels with value between 0 and n_classes-1.

    Attributes
    ----------
    `classes_` : array of shape (n_class,)
        Holds the label for each class.

    Examples
    --------
    `LabelEncoder` can be used to normalize labels.

    >>> from sklearn import preprocessing
    >>> le = preprocessing.LabelEncoder()
    >>> le.fit([1, 2, 2, 6])
    LabelEncoder()
    >>> le.classes_
    array([1, 2, 6])
    >>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS
    array([0, 0, 1, 2]...)
    >>> le.inverse_transform([0, 0, 1, 2])
    array([1, 1, 2, 6])

    It can also be used to transform non-numerical labels (as long as they are
    hashable and comparable) to numerical labels.

    >>> le = preprocessing.LabelEncoder()
    >>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
    LabelEncoder()
    >>> list(le.classes_)
    ['amsterdam', 'paris', 'tokyo']
    >>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS
    array([2, 2, 1]...)
    >>> list(le.inverse_transform([2, 2, 1]))
    ['tokyo', 'tokyo', 'paris']

    """

    def _check_fitted(self):
        if not hasattr(self, "classes_"):
            raise ValueError("LabelEncoder was not fitted yet.")

    def fit(self, y):
        """Fit label encoder

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Target values.

        Returns
        -------
        self : returns an instance of self.
        """
        y = column_or_1d(y, warn=True)
        self.classes_ = np.unique(y)
        return self

    def fit_transform(self, y):
        """Fit label encoder and return encoded labels

        Parameters
        ----------
        y : array-like of shape [n_samples]
            Target values.

        Returns
        -------
        y : array-like of shape [n_samples]
        """
        y = column_or_1d(y, warn=True)
        self.classes_, y = unique(y, return_inverse=True)
        return y

    def transform(self, y):
        """Transform labels to normalized encoding.

        Parameters
        ----------
        y : array-like of shape [n_samples]
            Target values.

        Returns
        -------
        y : array-like of shape [n_samples]
        """
        self._check_fitted()

        classes = np.unique(y)
        if len(np.intersect1d(classes, self.classes_)) < len(classes):
            diff = np.setdiff1d(classes, self.classes_)
            raise ValueError("y contains new labels: %s" % str(diff))

        return np.searchsorted(self.classes_, y)

    def inverse_transform(self, y):
        """Transform labels back to original encoding.

        Parameters
        ----------
        y : numpy array of shape [n_samples]
            Target values.

        Returns
        -------
        y : numpy array of shape [n_samples]
        """
        self._check_fitted()

        y = np.asarray(y)
        return self.classes_[y]


class LabelBinarizer(BaseEstimator, TransformerMixin):
    """Binarize labels in a one-vs-all fashion

    Several regression and binary classification algorithms are
    available in the scikit. A simple way to extend these algorithms
    to the multi-class classification case is to use the so-called
    one-vs-all scheme.

    At learning time, this simply consists in learning one regressor
    or binary classifier per class. In doing so, one needs to convert
    multi-class labels to binary labels (belong or does not belong
    to the class). LabelBinarizer makes this process easy with the
    transform method.

    At prediction time, one assigns the class for which the corresponding
    model gave the greatest confidence. LabelBinarizer makes this easy
    with the inverse_transform method.

    Parameters
    ----------

    neg_label : int (default: 0)
        Value with which negative labels must be encoded.

    pos_label : int (default: 1)
        Value with which positive labels must be encoded.

    Attributes
    ----------
    `classes_` : array of shape [n_class]
        Holds the label for each class.

    `multilabel_` : boolean
        True if the transformer was fitted on a multilabel rather than a
        multiclass set of labels.

    Examples
    --------
    >>> from sklearn import preprocessing
    >>> lb = preprocessing.LabelBinarizer()
    >>> lb.fit([1, 2, 6, 4, 2])
    LabelBinarizer(neg_label=0, pos_label=1)
    >>> lb.classes_
    array([1, 2, 4, 6])
    >>> lb.multilabel_
    False
    >>> lb.transform([1, 6])
    array([[1, 0, 0, 0],
           [0, 0, 0, 1]])

    >>> lb.fit_transform([(1, 2), (3,)])
    array([[1, 1, 0],
           [0, 0, 1]])
    >>> lb.classes_
    array([1, 2, 3])
    >>> lb.multilabel_
    True

    See also
    --------
    label_binarize : function to perform the transform operation of
        LabelBinarizer with fixed classes.
    """

    def __init__(self, neg_label=0, pos_label=1):
        if neg_label >= pos_label:
            raise ValueError("neg_label must be strictly less than pos_label.")

        self.neg_label = neg_label
        self.pos_label = pos_label

    @property
    @deprecated("Attribute `multilabel` was renamed to `multilabel_` in "
                "0.14 and will be removed in 0.16")
    def multilabel(self):
        return self.multilabel_

    def _check_fitted(self):
        if not hasattr(self, "classes_"):
            raise ValueError("LabelBinarizer was not fitted yet.")

    def fit(self, y):
        """Fit label binarizer

        Parameters
        ----------
        y : numpy array of shape (n_samples,) or sequence of sequences
            Target values. In the multilabel case the nested sequences can
            have variable lengths.

        Returns
        -------
        self : returns an instance of self.
        """
        y_type = type_of_target(y)
        self.multilabel_ = y_type.startswith('multilabel')
        if self.multilabel_:
            self.indicator_matrix_ = y_type == 'multilabel-indicator'

        self.classes_ = unique_labels(y)

        return self

    def transform(self, y):
        """Transform multi-class labels to binary labels

        The output of transform is sometimes referred to by some authors as the
        1-of-K coding scheme.

        Parameters
        ----------
        y : numpy array of shape [n_samples] or sequence of sequences
            Target values. In the multilabel case the nested sequences can
            have variable lengths.

        Returns
        -------
        Y : numpy array of shape [n_samples, n_classes]
        """
        self._check_fitted()

        y_is_multilabel = type_of_target(y).startswith('multilabel')

        if y_is_multilabel and not self.multilabel_:
            raise ValueError("The object was not fitted with multilabel"
                             " input.")

        return label_binarize(y, self.classes_,
                              multilabel=self.multilabel_,
                              pos_label=self.pos_label,
                              neg_label=self.neg_label)

    def inverse_transform(self, Y, threshold=None):
        """Transform binary labels back to multi-class labels

        Parameters
        ----------
        Y : numpy array of shape [n_samples, n_classes]
            Target values.

        threshold : float or None
            Threshold used in the binary and multi-label cases.

            Use 0 when:
                - Y contains the output of decision_function (classifier)
            Use 0.5 when:
                - Y contains the output of predict_proba

            If None, the threshold is assumed to be half way between
            neg_label and pos_label.

        Returns
        -------
        y : numpy array of shape [n_samples] or sequence of sequences
            Target values. In the multilabel case the nested sequences can
            have variable lengths.

        Notes
        -----
        In the case when the binary labels are fractional
        (probabilistic), inverse_transform chooses the class with the
        greatest value. Typically, this allows to use the output of a
        linear model's decision_function method directly as the input
        of inverse_transform.
        """
        self._check_fitted()

        if threshold is None:
            half = (self.pos_label - self.neg_label) / 2.0
            threshold = self.neg_label + half

        if self.multilabel_:
            Y = np.array(Y > threshold, dtype=int)
            # Return the predictions in the same format as in fit
            if self.indicator_matrix_:
                # Label indicator matrix format
                return Y
            else:
                # Lists of tuples format
                return [tuple(self.classes_[np.flatnonzero(Y[i])])
                        for i in range(Y.shape[0])]

        if len(Y.shape) == 1 or Y.shape[1] == 1:
            y = np.array(Y.ravel() > threshold, dtype=int)

        else:
            y = Y.argmax(axis=1)

        return self.classes_[y]


def label_binarize(y, classes, multilabel=False, neg_label=0, pos_label=1):
    """Binarize labels in a one-vs-all fashion

    Several regression and binary classification algorithms are
    available in the scikit. A simple way to extend these algorithms
    to the multi-class classification case is to use the so-called
    one-vs-all scheme.

    This function makes it possible to compute this transformation for a
    fixed set of class labels known ahead of time.

    Parameters
    ----------
    y : array-like
        Sequence of integer labels to encode.

    classes : array of shape [n_classes]
        Uniquely holds the label for each class.

    multilabel : boolean
        Set to true if y is encoding a multilabel tasks (with a variable
        number of label assignements per sample) rather than a multiclass task
        where one sample has one and only one label assigned.

    neg_label: int (default: 0)
        Value with which negative labels must be encoded.

    pos_label: int (default: 1)
        Value with which positive labels must be encoded.

    Examples
    --------
    >>> from sklearn.preprocessing import label_binarize
    >>> label_binarize([1, 6], classes=[1, 2, 4, 6])
    array([[1, 0, 0, 0],
           [0, 0, 0, 1]])

    The class ordering is preserved:

    >>> label_binarize([1, 6], classes=[1, 6, 4, 2])
    array([[1, 0, 0, 0],
           [0, 1, 0, 0]])

    >>> label_binarize([(1, 2), (6,), ()], multilabel=True,
    ...                classes=[1, 6, 4, 2])
    array([[1, 0, 0, 1],
           [0, 1, 0, 0],
           [0, 0, 0, 0]])

    See also
    --------
    label_binarize : function to perform the transform operation of
        LabelBinarizer with fixed classes.
    """
    y_type = type_of_target(y)

    if multilabel or len(classes) > 2:
        if y_type == 'multilabel-indicator':
            # nothing to do as y is already a label indicator matrix
            return y

        Y = np.zeros((len(y), len(classes)), dtype=np.int)
    else:
        Y = np.zeros((len(y), 1), dtype=np.int)

    Y += neg_label

    y_is_multilabel = y_type.startswith('multilabel')

    if multilabel:
        if not y_is_multilabel:
            raise ValueError("y should be a list of label lists/tuples,"
                             "got %r" % (y,))

        # inverse map: label => column index
        imap = dict((v, k) for k, v in enumerate(classes))

        for i, label_tuple in enumerate(y):
            for label in label_tuple:
                Y[i, imap[label]] = pos_label

        return Y

    else:
        y = column_or_1d(y)

        if len(classes) == 2:
            Y[y == classes[1], 0] = pos_label
            return Y

        elif len(classes) >= 2:
            for i, k in enumerate(classes):
                Y[y == k, i] = pos_label
            return Y

        else:
            # Only one class, returns a matrix with all negative labels.
            return Y