This file is indexed.

/usr/share/pyshared/sklearn/preprocessing/imputation.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# Authors: Nicolas Tresegnie <nicolas.tresegnie@gmail.com>
# License: BSD 3 clause

import warnings
import math

import numpy as np
import numpy.ma as ma
from scipy import sparse
from scipy import stats

from ..base import BaseEstimator, TransformerMixin
from ..utils import array2d
from ..utils import atleast2d_or_csr
from ..utils import atleast2d_or_csc

from ..externals import six

zip = six.moves.zip
map = six.moves.map

__all__ = [
    'Imputer',
]


def _get_mask(X, value_to_mask):
    """Compute the boolean mask X == missing_values."""
    if value_to_mask == "NaN" or np.isnan(value_to_mask):
        return np.isnan(X)
    else:
        return X == value_to_mask


def _get_median(negative_elements, n_zeros, positive_elements):
    """Compute the median of the array formed by negative_elements,
       n_zeros zeros and positive_elements. This function is used
       to support sparse matrices."""
    negative_elements = np.sort(negative_elements, kind='heapsort')
    positive_elements = np.sort(positive_elements, kind='heapsort')

    n_elems = len(negative_elements) + n_zeros + len(positive_elements)
    if not n_elems:
        return np.nan

    median_position = (n_elems - 1) / 2.0

    if round(median_position) == median_position:
        median = _get_elem_at_rank(negative_elements, n_zeros,
                                   positive_elements, median_position)
    else:
        a = _get_elem_at_rank(negative_elements, n_zeros,
                              positive_elements, math.floor(median_position))
        b = _get_elem_at_rank(negative_elements, n_zeros,
                              positive_elements, math.ceil(median_position))
        median = (a + b) / 2.0

    return median


def _get_elem_at_rank(negative_elements, n_zeros, positive_elements, k):
    """Compute the kth largest element of the array formed by
       negative_elements, n_zeros zeros and positive_elements."""
    len_neg = len(negative_elements)
    if k < len_neg:
        return negative_elements[k]
    elif k >= len_neg + n_zeros:
        return positive_elements[k - len_neg - n_zeros]
    else:
        return 0


def _most_frequent(array, extra_value, n_repeat):
    """Compute the most frequent value in a 1d array extended with
       [extra_value] * n_repeat, where extra_value is assumed to be not part
       of the array."""
    # Compute the most frequent value in array only
    if array.size > 0:
        mode = stats.mode(array)
        most_frequent_value = mode[0][0]
        most_frequent_count = mode[1][0]
    else:
        most_frequent_value = 0
        most_frequent_count = 0

    # Compare to array + [extra_value] * n_repeat
    if most_frequent_count == 0 and n_repeat == 0:
        return np.nan
    elif most_frequent_count < n_repeat:
        return extra_value
    elif most_frequent_count > n_repeat:
        return most_frequent_value
    elif most_frequent_count == n_repeat:
        # Ties the breaks. Copy the behaviour of scipy.stats.mode
        if most_frequent_value < extra_value:
            return most_frequent_value
        else:
            return extra_value


class Imputer(BaseEstimator, TransformerMixin):
    """Imputation transformer for completing missing values.

    Parameters
    ----------
    missing_values : integer or string, optional (default="NaN")
        The placeholder for the missing values. All occurences of
        `missing_values` will be imputed. For missing values encoded as np.nan,
        use the string value "NaN".

    strategy : string, optional (default="mean")
        The imputation strategy.
          - If "mean", then replace missing values using the mean along
            the axis.
          - If "median", then replace missing values using the median along
            the axis.
          - If "most_frequent", then replace missing using the most frequent
            value along the axis.

    axis : integer, optional (default=0)
        The axis along which to impute.
         - If `axis=0`, then impute along columns.
         - If `axis=1`, then impute along rows.

    verbose : integer, optional (default=0)
        Controls the verbosity of the imputer.

    copy : boolean, optional (default=True)
        If True, a copy of X will be created. If False, imputation will
        be done in-place.

    Attributes
    ----------
    `statistics_` : array of shape (n_features,) or (n_samples,)
        The statistics along the imputation axis.

    Notes
    -----
    - When ``axis=0``, columns which only contained missing values at `fit`
      are discarded upon `transform`.
    - When ``axis=1``, an exception is raised if there are rows for which it is
      not possible to fill in the missing values (e.g., because they only
      contain missing values).
    """
    def __init__(self, missing_values="NaN", strategy="mean",
                 axis=0, verbose=0, copy=True):
        self.missing_values = missing_values
        self.strategy = strategy
        self.axis = axis
        self.verbose = verbose
        self.copy = copy

    def fit(self, X, y=None):
        """Fit the imputer on X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Input data, where ``n_samples`` is the number of samples and
            ``n_features`` is the number of features.

        Returns
        -------
        self : object
            Returns self.
        """
        # Check parameters
        allowed_strategies = ["mean", "median", "most_frequent"]
        if self.strategy not in allowed_strategies:
            raise ValueError("Can only use these strategies: {0} "
                             " got strategy={1}".format(allowed_strategies,
                                                        self.strategy))

        if self.axis not in [0, 1]:
            raise ValueError("Can only impute missing values on axis 0 and 1, "
                             " got axis={0}".format(self.axis))

        # Since two different arrays can be provided in fit(X) and
        # transform(X), the imputation data will be computed in transform()
        # when the imputation is done per sample (i.e., when axis=1).
        if self.axis == 0:
            X = atleast2d_or_csc(X, dtype=np.float64, force_all_finite=False)

            if sparse.issparse(X):
                self.statistics_ = self._sparse_fit(X,
                                                    self.strategy,
                                                    self.missing_values,
                                                    self.axis)
            else:
                self.statistics_ = self._dense_fit(X,
                                                   self.strategy,
                                                   self.missing_values,
                                                   self.axis)

        return self

    def _sparse_fit(self, X, strategy, missing_values, axis):
        """Fit the transformer on sparse data."""
        # Imputation is done "by column", so if we want to do it
        # by row we only need to convert the matrix to csr format.
        if axis == 1:
            X = X.tocsr()
        else:
            X = X.tocsc()

        # Count the zeros
        if missing_values == 0:
            n_zeros_axis = np.zeros(X.shape[not axis])
        else:
            n_zeros_axis = X.shape[axis] - np.diff(X.indptr)

        # Mean
        if strategy == "mean":
            if missing_values != 0:
                n_non_missing = n_zeros_axis

                # Mask the missing elements
                mask_missing_values = _get_mask(X.data, missing_values)
                mask_valids = np.logical_not(mask_missing_values)

                # Sum only the valid elements
                new_data = X.data.copy()
                new_data[mask_missing_values] = 0
                X = sparse.csc_matrix((new_data, X.indices, X.indptr),
                                      copy=False)
                sums = X.sum(axis=0)

                # Count the elements != 0
                mask_non_zeros = sparse.csc_matrix(
                    (mask_valids.astype(np.float64),
                     X.indices,
                     X.indptr), copy=False)
                s = mask_non_zeros.sum(axis=0)
                n_non_missing = np.add(n_non_missing, s)

            else:
                sums = X.sum(axis=axis)
                n_non_missing = np.diff(X.indptr)

            # Ignore the error, columns with a np.nan statistics_
            # are not an error at this point. These columns will
            # be removed in transform
            with np.errstate(all="ignore"):
                return np.ravel(sums) / np.ravel(n_non_missing)

        # Median + Most frequent
        else:
            # Remove the missing values, for each column
            columns_all = np.hsplit(X.data, X.indptr[1:-1])
            mask_missing_values = _get_mask(X.data, missing_values)
            mask_valids = np.hsplit(np.logical_not(mask_missing_values),
                                    X.indptr[1:-1])

            columns = [col[mask.astype(np.bool)]
                       for col, mask in zip(columns_all, mask_valids)]

            # Median
            if strategy == "median":
                median = np.empty(len(columns))
                for i, column in enumerate(columns):

                    negatives = column[column < 0]
                    positives = column[column > 0]
                    median[i] = _get_median(negatives,
                                            n_zeros_axis[i],
                                            positives)

                return median

            # Most frequent
            elif strategy == "most_frequent":
                most_frequent = np.empty(len(columns))

                for i, column in enumerate(columns):
                    most_frequent[i] = _most_frequent(column,
                                                      0,
                                                      n_zeros_axis[i])

                return most_frequent

    def _dense_fit(self, X, strategy, missing_values, axis):
        """Fit the transformer on dense data."""
        X = array2d(X, force_all_finite=False)
        mask = _get_mask(X, missing_values)
        masked_X = ma.masked_array(X, mask=mask)

        # Mean
        if strategy == "mean":
            mean_masked = np.ma.mean(masked_X, axis=axis)
            # Avoid the warning "Warning: converting a masked element to nan."
            mean = np.ma.getdata(mean_masked)
            mean[np.ma.getmask(mean_masked)] = np.nan

            return mean

        # Median
        elif strategy == "median":
            if tuple(int(v) for v in np.__version__.split('.')[:2]) < (1, 5):
                # In old versions of numpy, calling a median on an array
                # containing nans returns nan. This is different is
                # recent versions of numpy, which we want to mimic
                masked_X.mask = np.logical_or(masked_X.mask,
                                              np.isnan(X))
            median_masked = np.ma.median(masked_X, axis=axis)
            # Avoid the warning "Warning: converting a masked element to nan."
            median = np.ma.getdata(median_masked)
            median[np.ma.getmask(median_masked)] = np.nan

            return median

        # Most frequent
        elif strategy == "most_frequent":
            # scipy.stats.mstats.mode cannot be used because it will no work
            # properly if the first element is masked and if it's frequency
            # is equal to the frequency of the most frequent valid element
            # See https://github.com/scipy/scipy/issues/2636

            # To be able access the elements by columns
            if axis == 0:
                X = X.transpose()
                mask = mask.transpose()

            most_frequent = np.empty(X.shape[0])

            for i, (row, row_mask) in enumerate(zip(X[:], mask[:])):
                row_mask = np.logical_not(row_mask).astype(np.bool)
                row = row[row_mask]
                most_frequent[i] = _most_frequent(row, np.nan, 0)

            return most_frequent

    def transform(self, X):
        """Impute all missing values in X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            The input data to complete.
        """
        if self.copy and not isinstance(X, list):
            X = X.copy()

        # Since two different arrays can be provided in fit(X) and
        # transform(X), the imputation data need to be recomputed
        # when the imputation is done per sample
        if self.axis == 1:
            X = atleast2d_or_csr(X, force_all_finite=False).astype(np.float)

            if sparse.issparse(X):
                statistics = self._sparse_fit(X,
                                              self.strategy,
                                              self.missing_values,
                                              self.axis)

            else:
                statistics = self._dense_fit(X,
                                             self.strategy,
                                             self.missing_values,
                                             self.axis)
        else:
            X = atleast2d_or_csc(X, force_all_finite=False).astype(np.float)
            statistics = self.statistics_

        # Delete the invalid rows/columns
        invalid_mask = np.isnan(statistics)
        valid_mask = np.logical_not(invalid_mask)
        valid_statistics = statistics[valid_mask]
        valid_statistics_indexes = np.where(valid_mask)[0]
        missing = np.arange(X.shape[not self.axis])[invalid_mask]

        if self.axis == 0 and invalid_mask.any():
            if self.verbose:
                warnings.warn("Deleting features without "
                              "observed values: %s" % missing)
            X = X[:, valid_statistics_indexes]
        elif self.axis == 1 and invalid_mask.any():
            raise ValueError("Some rows only contain "
                             "missing values: %s" % missing)

        # Do actual imputation
        if sparse.issparse(X) and self.missing_values != 0:
            if self.axis == 0:
                X = X.tocsr()
            else:
                X = X.tocsc()

            mask = _get_mask(X.data, self.missing_values)
            indexes = X.indices[mask]

            X.data[mask] = valid_statistics[indexes].astype(X.dtype)
        else:
            if sparse.issparse(X):
                X = X.toarray()

            mask = _get_mask(X, self.missing_values)
            n_missing = np.sum(mask, axis=self.axis)
            values = np.repeat(valid_statistics, n_missing)

            if self.axis == 0:
                coordinates = np.where(mask.transpose())[::-1]
            else:
                coordinates = mask

            X[coordinates] = values

        return X