This file is indexed.

/usr/share/pyshared/sklearn/preprocessing/data.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Olivier Grisel <olivier.grisel@ensta.org>
#          Andreas Mueller <amueller@ais.uni-bonn.de>
# License: BSD 3 clause

import numbers
import warnings

import numpy as np
from scipy import sparse
from ..base import BaseEstimator, TransformerMixin
from ..utils import check_arrays
from ..utils import atleast2d_or_csc
from ..utils import array2d
from ..utils import atleast2d_or_csr
from ..utils import safe_asarray
from ..utils import warn_if_not_float

from ..utils.sparsefuncs import inplace_csr_row_normalize_l1
from ..utils.sparsefuncs import inplace_csr_row_normalize_l2
from ..utils.sparsefuncs import inplace_csr_column_scale
from ..utils.sparsefuncs import mean_variance_axis0
from ..externals import six

zip = six.moves.zip
map = six.moves.map

__all__ = [
    'Binarizer',
    'KernelCenterer',
    'MinMaxScaler',
    'Normalizer',
    'OneHotEncoder',
    'Scaler',
    'StandardScaler',
    'add_dummy_feature',
    'binarize',
    'normalize',
    'scale',
]


def _mean_and_std(X, axis=0, with_mean=True, with_std=True):
    """Compute mean and std deviation for centering, scaling.

    Zero valued std components are reset to 1.0 to avoid NaNs when scaling.
    """
    X = np.asarray(X)
    Xr = np.rollaxis(X, axis)

    if with_mean:
        mean_ = Xr.mean(axis=0)
    else:
        mean_ = None

    if with_std:
        std_ = Xr.std(axis=0)
        if isinstance(std_, np.ndarray):
            std_[std_ == 0.0] = 1.0
        elif std_ == 0.:
            std_ = 1.
    else:
        std_ = None

    return mean_, std_


def scale(X, axis=0, with_mean=True, with_std=True, copy=True):
    """Standardize a dataset along any axis

    Center to the mean and component wise scale to unit variance.

    Parameters
    ----------
    X : array-like or CSR matrix.
        The data to center and scale.

    axis : int (0 by default)
        axis used to compute the means and standard deviations along. If 0,
        independently standardize each feature, otherwise (if 1) standardize
        each sample.

    with_mean : boolean, True by default
        If True, center the data before scaling.

    with_std : boolean, True by default
        If True, scale the data to unit variance (or equivalently,
        unit standard deviation).

    copy : boolean, optional, default is True
        set to False to perform inplace row normalization and avoid a
        copy (if the input is already a numpy array or a scipy.sparse
        CSR matrix and if axis is 1).

    Notes
    -----
    This implementation will refuse to center scipy.sparse matrices
    since it would make them non-sparse and would potentially crash the
    program with memory exhaustion problems.

    Instead the caller is expected to either set explicitly
    `with_mean=False` (in that case, only variance scaling will be
    performed on the features of the CSR matrix) or to call `X.toarray()`
    if he/she expects the materialized dense array to fit in memory.

    To avoid memory copy the caller should pass a CSR matrix.

    See also
    --------
    :class:`sklearn.preprocessing.StandardScaler` to perform centering and
    scaling using the ``Transformer`` API (e.g. as part of a preprocessing
    :class:`sklearn.pipeline.Pipeline`)
    """
    if sparse.issparse(X):
        if with_mean:
            raise ValueError(
                "Cannot center sparse matrices: pass `with_mean=False` instead"
                " See docstring for motivation and alternatives.")
        if axis != 0:
            raise ValueError("Can only scale sparse matrix on axis=0, "
                             " got axis=%d" % axis)
        warn_if_not_float(X, estimator='The scale function')
        if not sparse.isspmatrix_csr(X):
            X = X.tocsr()
            copy = False
        if copy:
            X = X.copy()
        _, var = mean_variance_axis0(X)
        var[var == 0.0] = 1.0
        inplace_csr_column_scale(X, 1 / np.sqrt(var))
    else:
        X = np.asarray(X)
        warn_if_not_float(X, estimator='The scale function')
        mean_, std_ = _mean_and_std(
            X, axis, with_mean=with_mean, with_std=with_std)
        if copy:
            X = X.copy()
        # Xr is a view on the original array that enables easy use of
        # broadcasting on the axis in which we are interested in
        Xr = np.rollaxis(X, axis)
        if with_mean:
            Xr -= mean_
        if with_std:
            Xr /= std_
    return X


class MinMaxScaler(BaseEstimator, TransformerMixin):
    """Standardizes features by scaling each feature to a given range.

    This estimator scales and translates each feature individually such
    that it is in the given range on the training set, i.e. between
    zero and one.

    The standardization is given by::
        X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
        X_scaled = X_std * (max - min) + min

    where min, max = feature_range.

    This standardization is often used as an alternative to zero mean,
    unit variance scaling.

    Parameters
    ----------
    feature_range: tuple (min, max), default=(0, 1)
        Desired range of transformed data.

    copy : boolean, optional, default is True
        Set to False to perform inplace row normalization and avoid a
        copy (if the input is already a numpy array).

    Attributes
    ----------
    `min_` : ndarray, shape (n_features,)
        Per feature adjustment for minimum.

    `scale_` : ndarray, shape (n_features,)
        Per feature relative scaling of the data.
    """

    def __init__(self, feature_range=(0, 1), copy=True):
        self.feature_range = feature_range
        self.copy = copy

    def fit(self, X, y=None):
        """Compute the minimum and maximum to be used for later scaling.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            The data used to compute the per-feature minimum and maximum
            used for later scaling along the features axis.
        """
        X = check_arrays(X, sparse_format="dense", copy=self.copy)[0]
        warn_if_not_float(X, estimator=self)
        feature_range = self.feature_range
        if feature_range[0] >= feature_range[1]:
            raise ValueError("Minimum of desired feature range must be smaller"
                             " than maximum. Got %s." % str(feature_range))
        data_min = np.min(X, axis=0)
        data_range = np.max(X, axis=0) - data_min
        # Do not scale constant features
        data_range[data_range == 0.0] = 1.0
        self.scale_ = (feature_range[1] - feature_range[0]) / data_range
        self.min_ = feature_range[0] - data_min * self.scale_
        self.data_range = data_range
        self.data_min = data_min
        return self

    def transform(self, X):
        """Scaling features of X according to feature_range.

        Parameters
        ----------
        X : array-like with shape [n_samples, n_features]
            Input data that will be transformed.
        """
        X = check_arrays(X, sparse_format="dense", copy=self.copy)[0]
        X *= self.scale_
        X += self.min_
        return X

    def inverse_transform(self, X):
        """Undo the scaling of X according to feature_range.

        Parameters
        ----------
        X : array-like with shape [n_samples, n_features]
            Input data that will be transformed.
        """
        X = check_arrays(X, sparse_format="dense", copy=self.copy)[0]
        X -= self.min_
        X /= self.scale_
        return X


class StandardScaler(BaseEstimator, TransformerMixin):
    """Standardize features by removing the mean and scaling to unit variance

    Centering and scaling happen independently on each feature by computing
    the relevant statistics on the samples in the training set. Mean and
    standard deviation are then stored to be used on later data using the
    `transform` method.

    Standardization of a dataset is a common requirement for many
    machine learning estimators: they might behave badly if the
    individual feature do not more or less look like standard normally
    distributed data (e.g. Gaussian with 0 mean and unit variance).

    For instance many elements used in the objective function of
    a learning algorithm (such as the RBF kernel of Support Vector
    Machines or the L1 and L2 regularizers of linear models) assume that
    all features are centered around 0 and have variance in the same
    order. If a feature has a variance that is orders of magnitude larger
    that others, it might dominate the objective function and make the
    estimator unable to learn from other features correctly as expected.

    Parameters
    ----------
    with_mean : boolean, True by default
        If True, center the data before scaling.
        This does not work (and will raise an exception) when attempted on
        sparse matrices, because centering them entails building a dense
        matrix which in common use cases is likely to be too large to fit in
        memory.

    with_std : boolean, True by default
        If True, scale the data to unit variance (or equivalently,
        unit standard deviation).

    copy : boolean, optional, default is True
        If False, try to avoid a copy and do inplace scaling instead.
        This is not guaranteed to always work inplace; e.g. if the data is
        not a NumPy array or scipy.sparse CSR matrix, a copy may still be
        returned.

    Attributes
    ----------
    `mean_` : array of floats with shape [n_features]
        The mean value for each feature in the training set.

    `std_` : array of floats with shape [n_features]
        The standard deviation for each feature in the training set.

    See also
    --------
    :func:`sklearn.preprocessing.scale` to perform centering and
    scaling without using the ``Transformer`` object oriented API

    :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True`
    to further remove the linear correlation across features.
    """

    def __init__(self, copy=True, with_mean=True, with_std=True):
        self.with_mean = with_mean
        self.with_std = with_std
        self.copy = copy

    def fit(self, X, y=None):
        """Compute the mean and std to be used for later scaling.

        Parameters
        ----------
        X : array-like or CSR matrix with shape [n_samples, n_features]
            The data used to compute the mean and standard deviation
            used for later scaling along the features axis.
        """
        X = check_arrays(X, copy=self.copy, sparse_format="csr")[0]
        if warn_if_not_float(X, estimator=self):
            X = X.astype(np.float)
        if sparse.issparse(X):
            if self.with_mean:
                raise ValueError(
                    "Cannot center sparse matrices: pass `with_mean=False` "
                    "instead. See docstring for motivation and alternatives.")
            self.mean_ = None

            if self.with_std:
                var = mean_variance_axis0(X)[1]
                self.std_ = np.sqrt(var)
                self.std_[var == 0.0] = 1.0
            else:
                self.std_ = None
            return self
        else:
            self.mean_, self.std_ = _mean_and_std(
                X, axis=0, with_mean=self.with_mean, with_std=self.with_std)
            return self

    def transform(self, X, y=None, copy=None):
        """Perform standardization by centering and scaling

        Parameters
        ----------
        X : array-like with shape [n_samples, n_features]
            The data used to scale along the features axis.
        """
        copy = copy if copy is not None else self.copy
        X = check_arrays(X, copy=copy, sparse_format="csr")[0]
        if warn_if_not_float(X, estimator=self):
            X = X.astype(np.float)
        if sparse.issparse(X):
            if self.with_mean:
                raise ValueError(
                    "Cannot center sparse matrices: pass `with_mean=False` "
                    "instead. See docstring for motivation and alternatives.")
            if self.std_ is not None:
                inplace_csr_column_scale(X, 1 / self.std_)
        else:
            if self.with_mean:
                X -= self.mean_
            if self.with_std:
                X /= self.std_
        return X

    def inverse_transform(self, X, copy=None):
        """Scale back the data to the original representation

        Parameters
        ----------
        X : array-like with shape [n_samples, n_features]
            The data used to scale along the features axis.
        """
        copy = copy if copy is not None else self.copy
        if sparse.issparse(X):
            if self.with_mean:
                raise ValueError(
                    "Cannot uncenter sparse matrices: pass `with_mean=False` "
                    "instead See docstring for motivation and alternatives.")
            if not sparse.isspmatrix_csr(X):
                X = X.tocsr()
                copy = False
            if copy:
                X = X.copy()
            if self.std_ is not None:
                inplace_csr_column_scale(X, self.std_)
        else:
            X = np.asarray(X)
            if copy:
                X = X.copy()
            if self.with_std:
                X *= self.std_
            if self.with_mean:
                X += self.mean_
        return X


class Scaler(StandardScaler):
    def __init__(self, copy=True, with_mean=True, with_std=True):
        warnings.warn("Scaler was renamed to StandardScaler. The old name "
                      " will be removed in 0.15.", DeprecationWarning)
        super(Scaler, self).__init__(copy, with_mean, with_std)


def normalize(X, norm='l2', axis=1, copy=True):
    """Normalize a dataset along any axis

    Parameters
    ----------
    X : array or scipy.sparse matrix with shape [n_samples, n_features]
        The data to normalize, element by element.
        scipy.sparse matrices should be in CSR format to avoid an
        un-necessary copy.

    norm : 'l1' or 'l2', optional ('l2' by default)
        The norm to use to normalize each non zero sample (or each non-zero
        feature if axis is 0).

    axis : 0 or 1, optional (1 by default)
        axis used to normalize the data along. If 1, independently normalize
        each sample, otherwise (if 0) normalize each feature.

    copy : boolean, optional, default is True
        set to False to perform inplace row normalization and avoid a
        copy (if the input is already a numpy array or a scipy.sparse
        CSR matrix and if axis is 1).

    See also
    --------
    :class:`sklearn.preprocessing.Normalizer` to perform normalization
    using the ``Transformer`` API (e.g. as part of a preprocessing
    :class:`sklearn.pipeline.Pipeline`)
    """
    if norm not in ('l1', 'l2'):
        raise ValueError("'%s' is not a supported norm" % norm)

    if axis == 0:
        sparse_format = 'csc'
    elif axis == 1:
        sparse_format = 'csr'
    else:
        raise ValueError("'%d' is not a supported axis" % axis)

    X = check_arrays(X, sparse_format=sparse_format, copy=copy)[0]
    warn_if_not_float(X, 'The normalize function')
    if axis == 0:
        X = X.T

    if sparse.issparse(X):
        if norm == 'l1':
            inplace_csr_row_normalize_l1(X)
        elif norm == 'l2':
            inplace_csr_row_normalize_l2(X)
    else:
        if norm == 'l1':
            norms = np.abs(X).sum(axis=1)[:, np.newaxis]
            norms[norms == 0.0] = 1.0
        elif norm == 'l2':
            norms = np.sqrt(np.sum(X ** 2, axis=1))[:, np.newaxis]
            norms[norms == 0.0] = 1.0
        X /= norms

    if axis == 0:
        X = X.T

    return X


class Normalizer(BaseEstimator, TransformerMixin):
    """Normalize samples individually to unit norm

    Each sample (i.e. each row of the data matrix) with at least one
    non zero component is rescaled independently of other samples so
    that its norm (l1 or l2) equals one.

    This transformer is able to work both with dense numpy arrays and
    scipy.sparse matrix (use CSR format if you want to avoid the burden of
    a copy / conversion).

    Scaling inputs to unit norms is a common operation for text
    classification or clustering for instance. For instance the dot
    product of two l2-normalized TF-IDF vectors is the cosine similarity
    of the vectors and is the base similarity metric for the Vector
    Space Model commonly used by the Information Retrieval community.

    Parameters
    ----------
    norm : 'l1' or 'l2', optional ('l2' by default)
        The norm to use to normalize each non zero sample.

    copy : boolean, optional, default is True
        set to False to perform inplace row normalization and avoid a
        copy (if the input is already a numpy array or a scipy.sparse
        CSR matrix).

    Notes
    -----
    This estimator is stateless (besides constructor parameters), the
    fit method does nothing but is useful when used in a pipeline.

    See also
    --------
    :func:`sklearn.preprocessing.normalize` equivalent function
    without the object oriented API
    """

    def __init__(self, norm='l2', copy=True):
        self.norm = norm
        self.copy = copy

    def fit(self, X, y=None):
        """Do nothing and return the estimator unchanged

        This method is just there to implement the usual API and hence
        work in pipelines.
        """
        atleast2d_or_csr(X)
        return self

    def transform(self, X, y=None, copy=None):
        """Scale each non zero row of X to unit norm

        Parameters
        ----------
        X : array or scipy.sparse matrix with shape [n_samples, n_features]
            The data to normalize, row by row. scipy.sparse matrices should be
            in CSR format to avoid an un-necessary copy.
        """
        copy = copy if copy is not None else self.copy
        atleast2d_or_csr(X)
        return normalize(X, norm=self.norm, axis=1, copy=copy)


def binarize(X, threshold=0.0, copy=True):
    """Boolean thresholding of array-like or scipy.sparse matrix

    Parameters
    ----------
    X : array or scipy.sparse matrix with shape [n_samples, n_features]
        The data to binarize, element by element.
        scipy.sparse matrices should be in CSR or CSC format to avoid an
        un-necessary copy.

    threshold : float, optional (0.0 by default)
        Feature values below or equal to this are replaced by 0, above it by 1.
        Threshold may not be less than 0 for operations on sparse matrices.

    copy : boolean, optional, default is True
        set to False to perform inplace binarization and avoid a copy
        (if the input is already a numpy array or a scipy.sparse CSR / CSC
        matrix and if axis is 1).

    See also
    --------
    :class:`sklearn.preprocessing.Binarizer` to perform binarization
    using the ``Transformer`` API (e.g. as part of a preprocessing
    :class:`sklearn.pipeline.Pipeline`)
    """
    sparse_format = "csr"  # We force sparse format to be either csr or csc.
    if hasattr(X, "format"):
        if X.format in ["csr", "csc"]:
            sparse_format = X.format

    X = check_arrays(X, sparse_format=sparse_format, copy=copy)[0]
    if sparse.issparse(X):
        if threshold < 0:
            raise ValueError('Cannot binarize a sparse matrix with threshold '
                             '< 0')
        cond = X.data > threshold
        not_cond = np.logical_not(cond)
        X.data[cond] = 1
        X.data[not_cond] = 0
        X.eliminate_zeros()
    else:
        cond = X > threshold
        not_cond = np.logical_not(cond)
        X[cond] = 1
        X[not_cond] = 0
    return X


class Binarizer(BaseEstimator, TransformerMixin):
    """Binarize data (set feature values to 0 or 1) according to a threshold

    Values greater than the threshold map to 1, while values less than
    or equal to the threshold map to 0. With the default threshold of 0,
    only positive values map to 1.

    Binarization is a common operation on text count data where the
    analyst can decide to only consider the presence or absence of a
    feature rather than a quantified number of occurrences for instance.

    It can also be used as a pre-processing step for estimators that
    consider boolean random variables (e.g. modelled using the Bernoulli
    distribution in a Bayesian setting).

    Parameters
    ----------
    threshold : float, optional (0.0 by default)
        Feature values below or equal to this are replaced by 0, above it by 1.
        Threshold may not be less than 0 for operations on sparse matrices.

    copy : boolean, optional, default is True
        set to False to perform inplace binarization and avoid a copy (if
        the input is already a numpy array or a scipy.sparse CSR matrix).

    Notes
    -----
    If the input is a sparse matrix, only the non-zero values are subject
    to update by the Binarizer class.

    This estimator is stateless (besides constructor parameters), the
    fit method does nothing but is useful when used in a pipeline.
    """

    def __init__(self, threshold=0.0, copy=True):
        self.threshold = threshold
        self.copy = copy

    def fit(self, X, y=None):
        """Do nothing and return the estimator unchanged

        This method is just there to implement the usual API and hence
        work in pipelines.
        """
        atleast2d_or_csr(X)
        return self

    def transform(self, X, y=None, copy=None):
        """Binarize each element of X

        Parameters
        ----------
        X : array or scipy.sparse matrix with shape [n_samples, n_features]
            The data to binarize, element by element.
            scipy.sparse matrices should be in CSR format to avoid an
            un-necessary copy.
        """
        copy = copy if copy is not None else self.copy
        return binarize(X, threshold=self.threshold, copy=copy)


class KernelCenterer(BaseEstimator, TransformerMixin):
    """Center a kernel matrix

    Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a
    function mapping x to a Hilbert space. KernelCenterer centers (i.e.,
    normalize to have zero mean) the data without explicitly computing phi(x).
    It is equivalent to centering phi(x) with
    sklearn.preprocessing.StandardScaler(with_std=False).
    """

    def fit(self, K, y=None):
        """Fit KernelCenterer

        Parameters
        ----------
        K : numpy array of shape [n_samples, n_samples]
            Kernel matrix.

        Returns
        -------
        self : returns an instance of self.
        """
        K = array2d(K)
        n_samples = K.shape[0]
        self.K_fit_rows_ = np.sum(K, axis=0) / n_samples
        self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples
        return self

    def transform(self, K, y=None, copy=True):
        """Center kernel matrix.

        Parameters
        ----------
        K : numpy array of shape [n_samples1, n_samples2]
            Kernel matrix.

        Returns
        -------
        K_new : numpy array of shape [n_samples1, n_samples2]
        """
        K = array2d(K)
        if copy:
            K = K.copy()

        K_pred_cols = (np.sum(K, axis=1) /
                       self.K_fit_rows_.shape[0])[:, np.newaxis]

        K -= self.K_fit_rows_
        K -= K_pred_cols
        K += self.K_fit_all_

        return K


def add_dummy_feature(X, value=1.0):
    """Augment dataset with an additional dummy feature.

    This is useful for fitting an intercept term with implementations which
    cannot otherwise fit it directly.

    Parameters
    ----------
    X : array or scipy.sparse matrix with shape [n_samples, n_features]
        Data.

    value : float
        Value to use for the dummy feature.

    Returns
    -------

    X : array or scipy.sparse matrix with shape [n_samples, n_features + 1]
        Same data with dummy feature added as first column.

    Examples
    --------

    >>> from sklearn.preprocessing import add_dummy_feature
    >>> add_dummy_feature([[0, 1], [1, 0]])
    array([[ 1.,  0.,  1.],
           [ 1.,  1.,  0.]])
    """
    X = safe_asarray(X)
    n_samples, n_features = X.shape
    shape = (n_samples, n_features + 1)
    if sparse.issparse(X):
        if sparse.isspmatrix_coo(X):
            # Shift columns to the right.
            col = X.col + 1
            # Column indices of dummy feature are 0 everywhere.
            col = np.concatenate((np.zeros(n_samples), col))
            # Row indices of dummy feature are 0, ..., n_samples-1.
            row = np.concatenate((np.arange(n_samples), X.row))
            # Prepend the dummy feature n_samples times.
            data = np.concatenate((np.ones(n_samples) * value, X.data))
            return sparse.coo_matrix((data, (row, col)), shape)
        elif sparse.isspmatrix_csc(X):
            # Shift index pointers since we need to add n_samples elements.
            indptr = X.indptr + n_samples
            # indptr[0] must be 0.
            indptr = np.concatenate((np.array([0]), indptr))
            # Row indices of dummy feature are 0, ..., n_samples-1.
            indices = np.concatenate((np.arange(n_samples), X.indices))
            # Prepend the dummy feature n_samples times.
            data = np.concatenate((np.ones(n_samples) * value, X.data))
            return sparse.csc_matrix((data, indices, indptr), shape)
        else:
            klass = X.__class__
            return klass(add_dummy_feature(X.tocoo(), value))
    else:
        return np.hstack((np.ones((n_samples, 1)) * value, X))


def _transform_selected(X, transform, selected="all", copy=True):
    """Apply a transform function to portion of selected features

    Parameters
    ----------
    X : array-like or sparse matrix, shape=(n_samples, n_features)
        Dense array or sparse matrix.

    transform : callable
        A callable transform(X) -> X_transformed

    copy : boolean, optional
        Copy X even if it could be avoided.

    selected: "all" or array of indices or mask
        Specify which features to apply the transform to.

    Returns
    -------
    X : array or sparse matrix, shape=(n_samples, n_features_new)
    """
    if selected == "all":
        return transform(X)

    X = atleast2d_or_csc(X, copy=copy)

    if len(selected) == 0:
        return X

    n_features = X.shape[1]
    ind = np.arange(n_features)
    sel = np.zeros(n_features, dtype=bool)
    sel[np.asarray(selected)] = True
    not_sel = np.logical_not(sel)
    n_selected = np.sum(sel)

    if n_selected == 0:
        # No features selected.
        return X
    elif n_selected == n_features:
        # All features selected.
        return transform(X)
    else:
        X_sel = transform(X[:, ind[sel]])
        X_not_sel = X[:, ind[not_sel]]

        if sparse.issparse(X_sel) or sparse.issparse(X_not_sel):
            return sparse.hstack((X_sel, X_not_sel))
        else:
            return np.hstack((X_sel, X_not_sel))


class OneHotEncoder(BaseEstimator, TransformerMixin):
    """Encode categorical integer features using a one-hot aka one-of-K scheme.

    The input to this transformer should be a matrix of integers, denoting
    the values taken on by categorical (discrete) features. The output will be
    a sparse matrix were each column corresponds to one possible value of one
    feature. It is assumed that input features take on values in the range
    [0, n_values).

    This encoding is needed for feeding categorical data to many scikit-learn
    estimators, notably linear models and SVMs with the standard kernels.

    Parameters
    ----------
    n_values : 'auto', int or array of ints
        Number of values per feature.

        - 'auto' : determine value range from training data.
        - int : maximum value for all features.
        - array : maximum value per feature.

    categorical_features: "all" or array of indices or mask
        Specify what features are treated as categorical.

        - 'all' (default): All features are treated as categorical.
        - array of indices: Array of categorical feature indices.
        - mask: Array of length n_features and with dtype=bool.

        Non-categorical features are always stacked to the right of the matrix.

    dtype : number type, default=np.float
        Desired dtype of output.

    Attributes
    ----------
    `active_features_` : array
        Indices for active features, meaning values that actually occur
        in the training set. Only available when n_values is ``'auto'``.

    `feature_indices_` : array of shape (n_features,)
        Indices to feature ranges.
        Feature ``i`` in the original data is mapped to features
        from ``feature_indices_[i]`` to ``feature_indices_[i+1]``
        (and then potentially masked by `active_features_` afterwards)

    `n_values_` : array of shape (n_features,)
        Maximum number of values per feature.

    Examples
    --------
    Given a dataset with three features and two samples, we let the encoder
    find the maximum value per feature and transform the data to a binary
    one-hot encoding.

    >>> from sklearn.preprocessing import OneHotEncoder
    >>> enc = OneHotEncoder()
    >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], \
[1, 0, 2]])  # doctest: +ELLIPSIS
    OneHotEncoder(categorical_features='all', dtype=<... 'float'>,
           n_values='auto')
    >>> enc.n_values_
    array([2, 3, 4])
    >>> enc.feature_indices_
    array([0, 2, 5, 9])
    >>> enc.transform([[0, 1, 1]]).toarray()
    array([[ 1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  0.]])

    See also
    --------
    sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of
      dictionary items (also handles string-valued features).
    sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot
      encoding of dictionary items or strings.
    """
    def __init__(self, n_values="auto", categorical_features="all",
                 dtype=np.float):
        self.n_values = n_values
        self.categorical_features = categorical_features
        self.dtype = dtype

    def fit(self, X, y=None):
        """Fit OneHotEncoder to X.

        Parameters
        ----------
        X : array-like, shape=(n_samples, n_feature)
            Input array of type int.

        Returns
        -------
        self
        """
        self.fit_transform(X)
        return self

    def _fit_transform(self, X):
        """Assumes X contains only categorical features."""
        X = check_arrays(X, sparse_format='dense', dtype=np.int)[0]
        if np.any(X < 0):
            raise ValueError("X needs to contain only non-negative integers.")
        n_samples, n_features = X.shape
        if self.n_values == 'auto':
            n_values = np.max(X, axis=0) + 1
        elif isinstance(self.n_values, numbers.Integral):
            n_values = np.empty(n_features, dtype=np.int)
            n_values.fill(self.n_values)
        else:
            try:
                n_values = np.asarray(self.n_values, dtype=int)
            except (ValueError, TypeError):
                raise TypeError("Wrong type for parameter `n_values`. Expected"
                                " 'auto', int or array of ints, got %r"
                                % type(X))
            if n_values.ndim < 1 or n_values.shape[0] != X.shape[1]:
                raise ValueError("Shape mismatch: if n_values is an array,"
                                 " it has to be of shape (n_features,).")
        self.n_values_ = n_values
        n_values = np.hstack([[0], n_values])
        indices = np.cumsum(n_values)
        self.feature_indices_ = indices

        column_indices = (X + indices[:-1]).ravel()
        row_indices = np.repeat(np.arange(n_samples, dtype=np.int32),
                                n_features)
        data = np.ones(n_samples * n_features)
        out = sparse.coo_matrix((data, (row_indices, column_indices)),
                                shape=(n_samples, indices[-1]),
                                dtype=self.dtype).tocsr()

        if self.n_values == 'auto':
            mask = np.array(out.sum(axis=0)).ravel() != 0
            active_features = np.where(mask)[0]
            out = out[:, active_features]
            self.active_features_ = active_features

        return out

    def fit_transform(self, X, y=None):
        """Fit OneHotEncoder to X, then transform X.

        Equivalent to self.fit(X).transform(X), but more convenient and more
        efficient. See fit for the parameters, transform for the return value.
        """
        return _transform_selected(X, self._fit_transform,
                                   self.categorical_features, copy=True)

    def _transform(self, X):
        """Asssumes X contains only categorical features."""
        X = check_arrays(X, sparse_format='dense', dtype=np.int)[0]
        if np.any(X < 0):
            raise ValueError("X needs to contain only non-negative integers.")
        n_samples, n_features = X.shape

        indices = self.feature_indices_
        if n_features != indices.shape[0] - 1:
            raise ValueError("X has different shape than during fitting."
                             " Expected %d, got %d."
                             % (indices.shape[0] - 1, n_features))

        n_values_check = np.max(X, axis=0) + 1
        if (n_values_check > self.n_values_).any():
            raise ValueError("Feature out of bounds. Try setting n_values.")

        column_indices = (X + indices[:-1]).ravel()
        row_indices = np.repeat(np.arange(n_samples, dtype=np.int32),
                                n_features)
        data = np.ones(n_samples * n_features)
        out = sparse.coo_matrix((data, (row_indices, column_indices)),
                                shape=(n_samples, indices[-1]),
                                dtype=self.dtype).tocsr()
        if self.n_values == 'auto':
            out = out[:, self.active_features_]
        return out

    def transform(self, X):
        """Transform X using one-hot encoding.

        Parameters
        ----------
        X : array-like, shape=(n_samples, n_features)
            Input array of type int.

        Returns
        -------
        X_out : sparse matrix, dtype=int
            Transformed input.
        """
        return _transform_selected(X, self._transform,
                                   self.categorical_features, copy=True)