This file is indexed.

/usr/share/pyshared/sklearn/naive_bayes.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
# -*- coding: utf-8 -*-

"""
The :mod:`sklearn.naive_bayes` module implements Naive Bayes algorithms. These
are supervised learning methods based on applying Bayes' theorem with strong
(naive) feature independence assumptions.
"""

# Author: Vincent Michel <vincent.michel@inria.fr>
#         Minor fixes by Fabian Pedregosa
#         Amit Aides <amitibo@tx.technion.ac.il>
#         Yehuda Finkelstein <yehudaf@tx.technion.ac.il>
#         Lars Buitinck <L.J.Buitinck@uva.nl>
#         (parts based on earlier work by Mathieu Blondel)
#
# License: BSD 3 clause

from abc import ABCMeta, abstractmethod

import numpy as np
from scipy.sparse import issparse
import warnings

from .base import BaseEstimator, ClassifierMixin
from .preprocessing import binarize
from .preprocessing import LabelBinarizer
from .preprocessing import label_binarize
from .utils import array2d, atleast2d_or_csr, column_or_1d, check_arrays
from .utils.extmath import safe_sparse_dot, logsumexp
from .utils.multiclass import _check_partial_fit_first_call
from .externals import six

__all__ = ['BernoulliNB', 'GaussianNB', 'MultinomialNB']


class BaseNB(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)):
    """Abstract base class for naive Bayes estimators"""

    @abstractmethod
    def _joint_log_likelihood(self, X):
        """Compute the unnormalized posterior log probability of X

        I.e. ``log P(c) + log P(x|c)`` for all rows x of X, as an array-like of
        shape [n_classes, n_samples].

        Input is passed to _joint_log_likelihood as-is by predict,
        predict_proba and predict_log_proba.
        """

    def predict(self, X):
        """
        Perform classification on an array of test vectors X.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        C : array, shape = [n_samples]
            Predicted target values for X
        """
        jll = self._joint_log_likelihood(X)
        return self.classes_[np.argmax(jll, axis=1)]

    def predict_log_proba(self, X):
        """
        Return log-probability estimates for the test vector X.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        C : array-like, shape = [n_samples, n_classes]
            Returns the log-probability of the sample for each class
            in the model, where classes are ordered arithmetically.
        """
        jll = self._joint_log_likelihood(X)
        # normalize by P(x) = P(f_1, ..., f_n)
        log_prob_x = logsumexp(jll, axis=1)
        return jll - np.atleast_2d(log_prob_x).T

    def predict_proba(self, X):
        """
        Return probability estimates for the test vector X.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        C : array-like, shape = [n_samples, n_classes]
            Returns the probability of the sample for each class in
            the model, where classes are ordered arithmetically.
        """
        return np.exp(self.predict_log_proba(X))


class GaussianNB(BaseNB):
    """
    Gaussian Naive Bayes (GaussianNB)

    Parameters
    ----------
    X : array-like, shape = [n_samples, n_features]
        Training vector, where n_samples in the number of samples and
        n_features is the number of features.

    y : array, shape = [n_samples]
        Target vector relative to X

    Attributes
    ----------
    `class_prior_` : array, shape = [n_classes]
        probability of each class.

    `theta_` : array, shape = [n_classes, n_features]
        mean of each feature per class

    `sigma_` : array, shape = [n_classes, n_features]
        variance of each feature per class

    Examples
    --------
    >>> import numpy as np
    >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    >>> Y = np.array([1, 1, 1, 2, 2, 2])
    >>> from sklearn.naive_bayes import GaussianNB
    >>> clf = GaussianNB()
    >>> clf.fit(X, Y)
    GaussianNB()
    >>> print(clf.predict([[-0.8, -1]]))
    [1]
    """

    def fit(self, X, y):
        """Fit Gaussian Naive Bayes according to X, y

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like, shape = [n_samples]
            Target values.

        Returns
        -------
        self : object
            Returns self.
        """

        X, y = check_arrays(X, y, sparse_format='dense')
        y = column_or_1d(y, warn=True)

        n_samples, n_features = X.shape

        self.classes_ = unique_y = np.unique(y)
        n_classes = unique_y.shape[0]

        self.theta_ = np.zeros((n_classes, n_features))
        self.sigma_ = np.zeros((n_classes, n_features))
        self.class_prior_ = np.zeros(n_classes)
        epsilon = 1e-9
        for i, y_i in enumerate(unique_y):
            self.theta_[i, :] = np.mean(X[y == y_i, :], axis=0)
            self.sigma_[i, :] = np.var(X[y == y_i, :], axis=0) + epsilon
            self.class_prior_[i] = np.float(np.sum(y == y_i)) / n_samples
        return self

    def _joint_log_likelihood(self, X):
        X = array2d(X)
        joint_log_likelihood = []
        for i in range(np.size(self.classes_)):
            jointi = np.log(self.class_prior_[i])
            n_ij = - 0.5 * np.sum(np.log(np.pi * self.sigma_[i, :]))
            n_ij -= 0.5 * np.sum(((X - self.theta_[i, :]) ** 2) /
                                 (self.sigma_[i, :]), 1)
            joint_log_likelihood.append(jointi + n_ij)

        joint_log_likelihood = np.array(joint_log_likelihood).T
        return joint_log_likelihood


class BaseDiscreteNB(BaseNB):
    """Abstract base class for naive Bayes on discrete/categorical data

    Any estimator based on this class should provide:

    __init__
    _joint_log_likelihood(X) as per BaseNB
    """

    def _update_class_log_prior(self, class_prior=None):
        n_classes = len(self.classes_)
        if class_prior is not None:
            if len(class_prior) != n_classes:
                raise ValueError("Number of priors must match number of"
                                 " classes.")
            self.class_log_prior_ = np.log(class_prior)
        elif self.fit_prior:
            # empirical prior, with sample_weight taken into account
            self.class_log_prior_ = (np.log(self.class_count_)
                                     - np.log(self.class_count_.sum()))
        else:
            self.class_log_prior_ = np.zeros(n_classes) - np.log(n_classes)

    def partial_fit(self, X, y, classes=None, sample_weight=None):
        """Incremental fit on a batch of samples.

        This method is expected to be called several times consecutively
        on different chunks of a dataset so as to implement out-of-core
        or online learning.

        This is especially useful when the whole dataset is too big to fit in
        memory at once.

        This method has some performance overhead hence it is better to call
        partial_fit on chunks of data that are as large as possible
        (as long as fitting in the memory budget) to hide the overhead.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples]
            Target values.

        classes : array-like, shape = [n_classes]
            List of all the classes that can possibly appear in the y vector.

            Must be provided at the first call to partial_fit, can be omitted
            in subsequent calls.

        sample_weight : array-like, shape = [n_samples], optional
            Weights applied to individual samples (1. for unweighted).

        Returns
        -------
        self : object
            Returns self.
        """
        X = atleast2d_or_csr(X).astype(np.float64)
        _, n_features = X.shape

        if _check_partial_fit_first_call(self, classes):
            # This is the first call to partial_fit:
            # initialize various cumulative counters
            n_effective_classes = len(classes) if len(classes) > 1 else 2
            self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64)
            self.feature_count_ = np.zeros((n_effective_classes, n_features),
                                           dtype=np.float64)

        Y = label_binarize(y, classes=self.classes_)
        if Y.shape[1] == 1:
            Y = np.concatenate((1 - Y, Y), axis=1)

        n_samples, n_classes = Y.shape

        if X.shape[0] != Y.shape[0]:
            msg = "X.shape[0]=%d and y.shape[0]=%d are incompatible."
            raise ValueError(msg % (X.shape[0], y.shape[0]))

        # convert to float to support sample weight consistently
        Y = Y.astype(np.float64)
        if sample_weight is not None:
            Y *= array2d(sample_weight).T

        # Count raw events from data before updating the class log prior
        # and feature log probas
        self._count(X, Y)

        # XXX: OPTIM: we could introduce a public finalization method to
        # be called by the user explicitly just once after several consecutive
        # calls to partial_fit and prior any call to predict[_[log_]proba]
        # to avoid computing the smooth log probas at each call to partial fit
        self._update_feature_log_prob()
        self._update_class_log_prior()
        return self

    def fit(self, X, y, sample_weight=None, class_prior=None):
        """Fit Naive Bayes classifier according to X, y

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples]
            Target values.

        sample_weight : array-like, shape = [n_samples], optional
            Weights applied to individual samples (1. for unweighted).

        Returns
        -------
        self : object
            Returns self.
        """
        X, y = check_arrays(X, y, sparse_format='csr')
        X = X.astype(np.float)
        y = column_or_1d(y, warn=True)
        _, n_features = X.shape

        labelbin = LabelBinarizer()
        Y = labelbin.fit_transform(y)
        self.classes_ = labelbin.classes_
        if Y.shape[1] == 1:
            Y = np.concatenate((1 - Y, Y), axis=1)

        if X.shape[0] != Y.shape[0]:
            msg = "X.shape[0]=%d and y.shape[0]=%d are incompatible."
            raise ValueError(msg % (X.shape[0], y.shape[0]))

        # convert to float to support sample weight consistently
        Y = Y.astype(np.float64)
        if sample_weight is not None:
            Y *= array2d(sample_weight).T

        if class_prior is not None:
            warnings.warn('class_prior has been made an ``__init__`` parameter'
                          ' and will be removed from fit in version 0.15.',
                          DeprecationWarning)
        else:
            class_prior = self.class_prior

        # Count raw events from data before updating the class log prior
        # and feature log probas
        n_effective_classes = Y.shape[1]
        self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64)
        self.feature_count_ = np.zeros((n_effective_classes, n_features),
                                       dtype=np.float64)
        self._count(X, Y)
        self._update_feature_log_prob()
        self._update_class_log_prior(class_prior=class_prior)
        return self

    # XXX The following is a stopgap measure; we need to set the dimensions
    # of class_log_prior_ and feature_log_prob_ correctly.
    def _get_coef(self):
        return (self.feature_log_prob_[1:]
                if len(self.classes_) == 2 else self.feature_log_prob_)

    def _get_intercept(self):
        return (self.class_log_prior_[1:]
                if len(self.classes_) == 2 else self.class_log_prior_)

    coef_ = property(_get_coef)
    intercept_ = property(_get_intercept)


class MultinomialNB(BaseDiscreteNB):
    """
    Naive Bayes classifier for multinomial models

    The multinomial Naive Bayes classifier is suitable for classification with
    discrete features (e.g., word counts for text classification). The
    multinomial distribution normally requires integer feature counts. However,
    in practice, fractional counts such as tf-idf may also work.

    Parameters
    ----------
    alpha : float, optional (default=1.0)
        Additive (Laplace/Lidstone) smoothing parameter
        (0 for no smoothing).

    fit_prior : boolean
        Whether to learn class prior probabilities or not.
        If false, a uniform prior will be used.

    class_prior : array-like, size (n_classes,)
        Prior probabilities of the classes. If specified the priors are not
        adjusted according to the data.

    Attributes
    ----------
    `class_log_prior_` : array, shape (n_classes, )
        Smoothed empirical log probability for each class.

    `intercept_` : property
        Mirrors ``class_log_prior_`` for interpreting MultinomialNB
        as a linear model.

    `feature_log_prob_`: array, shape (n_classes, n_features)
        Empirical log probability of features
        given a class, ``P(x_i|y)``.

    `coef_` : property
        Mirrors ``feature_log_prob_`` for interpreting MultinomialNB
        as a linear model.

    `class_count_` : array, shape (n_classes,)
        Number of samples encountered for each class during fitting. This
        value is weighted by the sample weight when provided.

    `feature_count_` : array, shape (n_classes, n_features)
        Number of samples encountered for each (class, feature)
        during fitting. This value is weighted by the sample weight when
        provided.

    Examples
    --------
    >>> import numpy as np
    >>> X = np.random.randint(5, size=(6, 100))
    >>> y = np.array([1, 2, 3, 4, 5, 6])
    >>> from sklearn.naive_bayes import MultinomialNB
    >>> clf = MultinomialNB()
    >>> clf.fit(X, y)
    MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
    >>> print(clf.predict(X[2]))
    [3]

    Notes
    -----
    For the rationale behind the names `coef_` and `intercept_`, i.e.
    naive Bayes as a linear classifier, see J. Rennie et al. (2003),
    Tackling the poor assumptions of naive Bayes text classifiers, ICML.

    References
    ----------
    C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to
    Information Retrieval. Cambridge University Press, pp. 234–265.
    http://nlp.stanford.edu/IR-book/html/htmledition/
        naive-bayes-text-classification-1.html
    """

    def __init__(self, alpha=1.0, fit_prior=True, class_prior=None):
        self.alpha = alpha
        self.fit_prior = fit_prior
        self.class_prior = class_prior

    def _count(self, X, Y):
        """Count and smooth feature occurrences."""
        if np.any((X.data if issparse(X) else X) < 0):
            raise ValueError("Input X must be non-negative")
        self.feature_count_ += safe_sparse_dot(Y.T, X)
        self.class_count_ += Y.sum(axis=0)

    def _update_feature_log_prob(self):
        """Apply smoothing to raw counts and recompute log probabilities"""
        smoothed_fc = self.feature_count_ + self.alpha
        smoothed_cc = smoothed_fc.sum(axis=1)

        self.feature_log_prob_ = (np.log(smoothed_fc)
                                  - np.log(smoothed_cc.reshape(-1, 1)))

    def _joint_log_likelihood(self, X):
        """Calculate the posterior log probability of the samples X"""
        X = atleast2d_or_csr(X)
        return (safe_sparse_dot(X, self.feature_log_prob_.T)
                + self.class_log_prior_)


class BernoulliNB(BaseDiscreteNB):
    """Naive Bayes classifier for multivariate Bernoulli models.

    Like MultinomialNB, this classifier is suitable for discrete data. The
    difference is that while MultinomialNB works with occurrence counts,
    BernoulliNB is designed for binary/boolean features.

    Parameters
    ----------
    alpha : float, optional (default=1.0)
        Additive (Laplace/Lidstone) smoothing parameter
        (0 for no smoothing).

    binarize : float or None, optional
        Threshold for binarizing (mapping to booleans) of sample features.
        If None, input is presumed to already consist of binary vectors.

    fit_prior : boolean
        Whether to learn class prior probabilities or not.
        If false, a uniform prior will be used.

    class_prior : array-like, size=[n_classes,]
        Prior probabilities of the classes. If specified the priors are not
        adjusted according to the data.

    Attributes
    ----------
    `class_log_prior_` : array, shape = [n_classes]
        Log probability of each class (smoothed).

    `feature_log_prob_` : array, shape = [n_classes, n_features]
        Empirical log probability of features given a class, P(x_i|y).

    `class_count_` : array, shape = [n_classes]
        Number of samples encountered for each class during fitting. This
        value is weighted by the sample weight when provided.

    `feature_count_` : array, shape = [n_classes, n_features]
        Number of samples encountered for each (class, feature)
        during fitting. This value is weighted by the sample weight when
        provided.

    Examples
    --------
    >>> import numpy as np
    >>> X = np.random.randint(2, size=(6, 100))
    >>> Y = np.array([1, 2, 3, 4, 4, 5])
    >>> from sklearn.naive_bayes import BernoulliNB
    >>> clf = BernoulliNB()
    >>> clf.fit(X, Y)
    BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
    >>> print(clf.predict(X[2]))
    [3]

    References
    ----------

    C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to
    Information Retrieval. Cambridge University Press, pp. 234–265.
    http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

    A. McCallum and K. Nigam (1998). A comparison of event models for naive
    Bayes text classification. Proc. AAAI/ICML-98 Workshop on Learning for
    Text Categorization, pp. 41–48.

    V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with
    naive Bayes -- Which naive Bayes? 3rd Conf. on Email and Anti-Spam (CEAS).
    """

    def __init__(self, alpha=1.0, binarize=.0, fit_prior=True,
                 class_prior=None):
        self.alpha = alpha
        self.binarize = binarize
        self.fit_prior = fit_prior
        self.class_prior = class_prior

    def _count(self, X, Y):
        """Count and smooth feature occurrences."""
        if self.binarize is not None:
            X = binarize(X, threshold=self.binarize)
        self.feature_count_ += safe_sparse_dot(Y.T, X)
        self.class_count_ += Y.sum(axis=0)

    def _update_feature_log_prob(self):
        """Apply smoothing to raw counts and recompute log probabilities"""
        n_classes = len(self.classes_)
        smoothed_fc = self.feature_count_ + self.alpha
        smoothed_cc = self.class_count_ + self.alpha * n_classes

        self.feature_log_prob_ = (np.log(smoothed_fc)
                                  - np.log(smoothed_cc.reshape(-1, 1)))

    def _joint_log_likelihood(self, X):
        """Calculate the posterior log probability of the samples X"""

        X = atleast2d_or_csr(X)

        if self.binarize is not None:
            X = binarize(X, threshold=self.binarize)

        n_classes, n_features = self.feature_log_prob_.shape
        n_samples, n_features_X = X.shape

        if n_features_X != n_features:
            raise ValueError("Expected input with %d features, got %d instead"
                             % (n_features, n_features_X))

        neg_prob = np.log(1 - np.exp(self.feature_log_prob_))
        # Compute  neg_prob · (1 - X).T  as  ∑neg_prob - X · neg_prob
        jll = safe_sparse_dot(X, (self.feature_log_prob_ - neg_prob).T)
        jll += self.class_log_prior_ + neg_prob.sum(axis=1)

        return jll