/usr/share/pyshared/sklearn/metrics/pairwise.py is in python-sklearn 0.14.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 | # -*- coding: utf-8 -*-
"""
The :mod:`sklearn.metrics.pairwise` submodule implements utilities to evaluate
pairwise distances or affinity of sets of samples.
This module contains both distance metrics and kernels. A brief summary is
given on the two here.
Distance metrics are a function d(a, b) such that d(a, b) < d(a, c) if objects
a and b are considered "more similar" to objects a and c. Two objects exactly
alike would have a distance of zero.
One of the most popular examples is Euclidean distance.
To be a 'true' metric, it must obey the following four conditions::
1. d(a, b) >= 0, for all a and b
2. d(a, b) == 0, if and only if a = b, positive definiteness
3. d(a, b) == d(b, a), symmetry
4. d(a, c) <= d(a, b) + d(b, c), the triangle inequality
Kernels are measures of similarity, i.e. ``s(a, b) > s(a, c)``
if objects ``a`` and ``b`` are considered "more similar" to objects
``a`` and ``c``. A kernel must also be positive semi-definite.
There are a number of ways to convert between a distance metric and a
similarity measure, such as a kernel. Let D be the distance, and S be the
kernel:
1. ``S = np.exp(-D * gamma)``, where one heuristic for choosing
``gamma`` is ``1 / num_features``
2. ``S = 1. / (D / np.max(D))``
"""
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Mathieu Blondel <mathieu@mblondel.org>
# Robert Layton <robertlayton@gmail.com>
# Andreas Mueller <amueller@ais.uni-bonn.de>
# License: BSD 3 clause
import numpy as np
from scipy.spatial import distance
from scipy.sparse import csr_matrix
from scipy.sparse import issparse
from ..utils import atleast2d_or_csr
from ..utils import gen_even_slices
from ..utils.extmath import safe_sparse_dot
from ..preprocessing import normalize
from ..externals.joblib import Parallel
from ..externals.joblib import delayed
from ..externals.joblib import parallel
from .pairwise_fast import _chi2_kernel_fast
# Utility Functions
def check_pairwise_arrays(X, Y):
""" Set X and Y appropriately and checks inputs
If Y is None, it is set as a pointer to X (i.e. not a copy).
If Y is given, this does not happen.
All distance metrics should use this function first to assert that the
given parameters are correct and safe to use.
Specifically, this function first ensures that both X and Y are arrays,
then checks that they are at least two dimensional while ensuring that
their elements are floats. Finally, the function checks that the size
of the second dimension of the two arrays is equal.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples_a, n_features]
Y : {array-like, sparse matrix}, shape = [n_samples_b, n_features]
Returns
-------
safe_X : {array-like, sparse matrix}, shape = [n_samples_a, n_features]
An array equal to X, guaranteed to be a numpy array.
safe_Y : {array-like, sparse matrix}, shape = [n_samples_b, n_features]
An array equal to Y if Y was not None, guaranteed to be a numpy array.
If Y was None, safe_Y will be a pointer to X.
"""
if Y is X or Y is None:
X = Y = atleast2d_or_csr(X)
else:
X = atleast2d_or_csr(X)
Y = atleast2d_or_csr(Y)
if X.shape[1] != Y.shape[1]:
raise ValueError("Incompatible dimension for X and Y matrices: "
"X.shape[1] == %d while Y.shape[1] == %d" % (
X.shape[1], Y.shape[1]))
if not (X.dtype == Y.dtype == np.float32):
if Y is X:
X = Y = X.astype(np.float)
else:
X = X.astype(np.float)
Y = Y.astype(np.float)
return X, Y
# Distances
def euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False):
"""
Considering the rows of X (and Y=X) as vectors, compute the
distance matrix between each pair of vectors.
For efficiency reasons, the euclidean distance between a pair of row
vector x and y is computed as::
dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y))
This formulation has two main advantages. First, it is computationally
efficient when dealing with sparse data. Second, if x varies but y
remains unchanged, then the right-most dot-product `dot(y, y)` can be
pre-computed.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples_1, n_features]
Y : {array-like, sparse matrix}, shape = [n_samples_2, n_features]
Y_norm_squared : array-like, shape = [n_samples_2], optional
Pre-computed dot-products of vectors in Y (e.g.,
``(Y**2).sum(axis=1)``)
squared : boolean, optional
Return squared Euclidean distances.
Returns
-------
distances : {array, sparse matrix}, shape = [n_samples_1, n_samples_2]
Examples
--------
>>> from sklearn.metrics.pairwise import euclidean_distances
>>> X = [[0, 1], [1, 1]]
>>> # distance between rows of X
>>> euclidean_distances(X, X)
array([[ 0., 1.],
[ 1., 0.]])
>>> # get distance to origin
>>> euclidean_distances(X, [[0, 0]])
array([[ 1. ],
[ 1.41421356]])
"""
# should not need X_norm_squared because if you could precompute that as
# well as Y, then you should just pre-compute the output and not even
# call this function.
X, Y = check_pairwise_arrays(X, Y)
if issparse(X):
XX = X.multiply(X).sum(axis=1)
else:
XX = np.sum(X * X, axis=1)[:, np.newaxis]
if X is Y: # shortcut in the common case euclidean_distances(X, X)
YY = XX.T
elif Y_norm_squared is None:
if issparse(Y):
# scipy.sparse matrices don't have element-wise scalar
# exponentiation, and tocsr has a copy kwarg only on CSR matrices.
YY = Y.copy() if isinstance(Y, csr_matrix) else Y.tocsr()
YY.data **= 2
YY = np.asarray(YY.sum(axis=1)).T
else:
YY = np.sum(Y ** 2, axis=1)[np.newaxis, :]
else:
YY = atleast2d_or_csr(Y_norm_squared)
if YY.shape != (1, Y.shape[0]):
raise ValueError(
"Incompatible dimensions for Y and Y_norm_squared")
distances = safe_sparse_dot(X, Y.T, dense_output=True)
distances *= -2
distances += XX
distances += YY
np.maximum(distances, 0, distances)
if X is Y:
# Ensure that distances between vectors and themselves are set to 0.0.
# This may not be the case due to floating point rounding errors.
distances.flat[::distances.shape[0] + 1] = 0.0
return distances if squared else np.sqrt(distances)
def manhattan_distances(X, Y=None, sum_over_features=True,
size_threshold=5e8):
""" Compute the L1 distances between the vectors in X and Y.
With sum_over_features equal to False it returns the componentwise
distances.
Parameters
----------
X : array_like
An array with shape (n_samples_X, n_features).
Y : array_like, optional
An array with shape (n_samples_Y, n_features).
sum_over_features : bool, default=True
If True the function returns the pairwise distance matrix
else it returns the componentwise L1 pairwise-distances.
size_threshold : int, default=5e8
Avoid creating temporary matrices bigger than size_threshold (in
bytes). If the problem size gets too big, the implementation then
breaks it down in smaller problems.
Returns
-------
D : array
If sum_over_features is False shape is
(n_samples_X * n_samples_Y, n_features) and D contains the
componentwise L1 pairwise-distances (ie. absolute difference),
else shape is (n_samples_X, n_samples_Y) and D contains
the pairwise l1 distances.
Examples
--------
>>> from sklearn.metrics.pairwise import manhattan_distances
>>> manhattan_distances(3, 3)#doctest:+ELLIPSIS
array([[ 0.]])
>>> manhattan_distances(3, 2)#doctest:+ELLIPSIS
array([[ 1.]])
>>> manhattan_distances(2, 3)#doctest:+ELLIPSIS
array([[ 1.]])
>>> manhattan_distances([[1, 2], [3, 4]],\
[[1, 2], [0, 3]])#doctest:+ELLIPSIS
array([[ 0., 2.],
[ 4., 4.]])
>>> import numpy as np
>>> X = np.ones((1, 2))
>>> y = 2 * np.ones((2, 2))
>>> manhattan_distances(X, y, sum_over_features=False)#doctest:+ELLIPSIS
array([[ 1., 1.],
[ 1., 1.]]...)
"""
if issparse(X) or issparse(Y):
raise ValueError("manhattan_distance does not support sparse"
" matrices.")
X, Y = check_pairwise_arrays(X, Y)
temporary_size = X.size * Y.shape[-1]
# Convert to bytes
temporary_size *= X.itemsize
if temporary_size > size_threshold and sum_over_features:
# Broadcasting the full thing would be too big: it's on the order
# of magnitude of the gigabyte
D = np.empty((X.shape[0], Y.shape[0]), dtype=X.dtype)
index = 0
increment = 1 + int(size_threshold / float(temporary_size) *
X.shape[0])
while index < X.shape[0]:
this_slice = slice(index, index + increment)
tmp = X[this_slice, np.newaxis, :] - Y[np.newaxis, :, :]
tmp = np.abs(tmp, tmp)
tmp = np.sum(tmp, axis=2)
D[this_slice] = tmp
index += increment
else:
D = X[:, np.newaxis, :] - Y[np.newaxis, :, :]
D = np.abs(D, D)
if sum_over_features:
D = np.sum(D, axis=2)
else:
D = D.reshape((-1, X.shape[1]))
return D
# Kernels
def linear_kernel(X, Y=None):
"""
Compute the linear kernel between X and Y.
Parameters
----------
X : array of shape (n_samples_1, n_features)
Y : array of shape (n_samples_2, n_features)
Returns
-------
Gram matrix : array of shape (n_samples_1, n_samples_2)
"""
X, Y = check_pairwise_arrays(X, Y)
return safe_sparse_dot(X, Y.T, dense_output=True)
def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1):
"""
Compute the polynomial kernel between X and Y::
K(X, Y) = (gamma <X, Y> + coef0)^degree
Parameters
----------
X : array of shape (n_samples_1, n_features)
Y : array of shape (n_samples_2, n_features)
degree : int
Returns
-------
Gram matrix : array of shape (n_samples_1, n_samples_2)
"""
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
K = linear_kernel(X, Y)
K *= gamma
K += coef0
K **= degree
return K
def sigmoid_kernel(X, Y=None, gamma=None, coef0=1):
"""
Compute the sigmoid kernel between X and Y::
K(X, Y) = tanh(gamma <X, Y> + coef0)
Parameters
----------
X : array of shape (n_samples_1, n_features)
Y : array of shape (n_samples_2, n_features)
degree : int
Returns
-------
Gram matrix: array of shape (n_samples_1, n_samples_2)
"""
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
K = linear_kernel(X, Y)
K *= gamma
K += coef0
np.tanh(K, K) # compute tanh in-place
return K
def rbf_kernel(X, Y=None, gamma=None):
"""
Compute the rbf (gaussian) kernel between X and Y::
K(x, y) = exp(-γ ||x-y||²)
for each pair of rows x in X and y in Y.
Parameters
----------
X : array of shape (n_samples_X, n_features)
Y : array of shape (n_samples_Y, n_features)
gamma : float
Returns
-------
kernel_matrix : array of shape (n_samples_X, n_samples_Y)
"""
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
K = euclidean_distances(X, Y, squared=True)
K *= -gamma
np.exp(K, K) # exponentiate K in-place
return K
def cosine_similarity(X, Y=None):
"""Compute cosine similarity between samples in X and Y.
Cosine similarity, or the cosine kernel, computes similarity as the
normalized dot product of X and Y:
K(X, Y) = <X, Y> / (||X||*||Y||)
On L2-normalized data, this function is equivalent to linear_kernel.
Parameters
----------
X : array_like, sparse matrix
with shape (n_samples_X, n_features).
Y : array_like, sparse matrix (optional)
with shape (n_samples_Y, n_features).
Returns
-------
kernel matrix : array_like
An array with shape (n_samples_X, n_samples_Y).
"""
# to avoid recursive import
X, Y = check_pairwise_arrays(X, Y)
X_normalized = normalize(X, copy=True)
if X is Y:
Y_normalized = X_normalized
else:
Y_normalized = normalize(Y, copy=True)
K = linear_kernel(X_normalized, Y_normalized)
return K
def additive_chi2_kernel(X, Y=None):
"""Computes the additive chi-squared kernel between observations in X and Y
The chi-squared kernel is computed between each pair of rows in X and Y. X
and Y have to be non-negative. This kernel is most commonly applied to
histograms.
The chi-squared kernel is given by::
k(x, y) = -∑ᵢ [(xᵢ - yᵢ)² / (xᵢ + yᵢ)]
It can be interpreted as a weighted difference per entry.
Notes
-----
As the negative of a distance, this kernel is only conditionally positive
definite.
Parameters
----------
X : array-like of shape (n_samples_X, n_features)
Y : array of shape (n_samples_Y, n_features)
Returns
-------
kernel_matrix : array of shape (n_samples_X, n_samples_Y)
References
----------
* Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C.
Local features and kernels for classification of texture and object
categories: A comprehensive study
International Journal of Computer Vision 2007
http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf
See also
--------
chi2_kernel : The exponentiated version of the kernel, which is usually
preferable.
sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation
to this kernel.
"""
if issparse(X) or issparse(Y):
raise ValueError("additive_chi2 does not support sparse matrices.")
X, Y = check_pairwise_arrays(X, Y)
if (X < 0).any():
raise ValueError("X contains negative values.")
if Y is not X and (Y < 0).any():
raise ValueError("Y contains negative values.")
result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype)
_chi2_kernel_fast(X, Y, result)
return result
def chi2_kernel(X, Y=None, gamma=1.):
"""Computes the exponential chi-squared kernel X and Y.
The chi-squared kernel is computed between each pair of rows in X and Y. X
and Y have to be non-negative. This kernel is most commonly applied to
histograms.
The chi-squared kernel is given by::
k(x, y) = exp(-γ ∑ᵢ [(xᵢ - yᵢ)² / (xᵢ + yᵢ)])
It can be interpreted as a weighted difference per entry.
Parameters
----------
X : array-like of shape (n_samples_X, n_features)
Y : array of shape (n_samples_Y, n_features)
gamma : float, default=1.
Scaling parameter of the chi2 kernel.
Returns
-------
kernel_matrix : array of shape (n_samples_X, n_samples_Y)
References
----------
* Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C.
Local features and kernels for classification of texture and object
categories: A comprehensive study
International Journal of Computer Vision 2007
http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf
See also
--------
additive_chi2_kernel : The additive version of this kernel
sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation
to the additive version of this kernel.
"""
K = additive_chi2_kernel(X, Y)
K *= gamma
return np.exp(K, K)
# Helper functions - distance
PAIRWISE_DISTANCE_FUNCTIONS = {
# If updating this dictionary, update the doc in both distance_metrics()
# and also in pairwise_distances()!
'euclidean': euclidean_distances,
'l2': euclidean_distances,
'l1': manhattan_distances,
'manhattan': manhattan_distances,
'cityblock': manhattan_distances, }
def distance_metrics():
"""Valid metrics for pairwise_distances.
This function simply returns the valid pairwise distance metrics.
It exists to allow for a description of the mapping for
each of the valid strings.
The valid distance metrics, and the function they map to, are:
============ ====================================
metric Function
============ ====================================
'cityblock' metrics.pairwise.manhattan_distances
'euclidean' metrics.pairwise.euclidean_distances
'l1' metrics.pairwise.manhattan_distances
'l2' metrics.pairwise.euclidean_distances
'manhattan' metrics.pairwise.manhattan_distances
============ ====================================
"""
return PAIRWISE_DISTANCE_FUNCTIONS
def _parallel_pairwise(X, Y, func, n_jobs, **kwds):
"""Break the pairwise matrix in n_jobs even slices
and compute them in parallel"""
if n_jobs < 0:
n_jobs = max(parallel.cpu_count() + 1 + n_jobs, 1)
if Y is None:
Y = X
ret = Parallel(n_jobs=n_jobs, verbose=0)(
delayed(func)(X, Y[s], **kwds)
for s in gen_even_slices(Y.shape[0], n_jobs))
return np.hstack(ret)
def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds):
""" Compute the distance matrix from a vector array X and optional Y.
This method takes either a vector array or a distance matrix, and returns
a distance matrix. If the input is a vector array, the distances are
computed. If the input is a distances matrix, it is returned instead.
This method provides a safe way to take a distance matrix as input, while
preserving compatibility with many other algorithms that take a vector
array.
If Y is given (default is None), then the returned matrix is the pairwise
distance between the arrays from both X and Y.
Please note that support for sparse matrices is currently limited to those
metrics listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS.
Valid values for metric are:
- from scikit-learn: ['euclidean', 'l2', 'l1', 'manhattan', 'cityblock']
- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski',
'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao',
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule']
See the documentation for scipy.spatial.distance for details on these
metrics.
Note in the case of 'euclidean' and 'cityblock' (which are valid
scipy.spatial.distance metrics), the values will use the scikit-learn
implementation, which is faster and has support for sparse matrices.
For a verbose description of the metrics from scikit-learn, see the
__doc__ of the sklearn.pairwise.distance_metrics function.
Parameters
----------
X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \
[n_samples_a, n_features] otherwise
Array of pairwise distances between samples, or a feature array.
Y : array [n_samples_b, n_features]
A second feature array only if X has shape [n_samples_a, n_features].
metric : string, or callable
The metric to use when calculating distance between instances in a
feature array. If metric is a string, it must be one of the options
allowed by scipy.spatial.distance.pdist for its metric parameter, or
a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS.
If metric is "precomputed", X is assumed to be a distance matrix.
Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays from X as input and return a value indicating
the distance between them.
n_jobs : int
The number of jobs to use for the computation. This works by breaking
down the pairwise matrix into n_jobs even slices and computing them in
parallel.
If -1 all CPUs are used. If 1 is given, no parallel computing code is
used at all, which is useful for debugging. For n_jobs below -1,
(n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
are used.
`**kwds` : optional keyword parameters
Any further parameters are passed directly to the distance function.
If using a scipy.spatial.distance metric, the parameters are still
metric dependent. See the scipy docs for usage examples.
Returns
-------
D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]
A distance matrix D such that D_{i, j} is the distance between the
ith and jth vectors of the given matrix X, if Y is None.
If Y is not None, then D_{i, j} is the distance between the ith array
from X and the jth array from Y.
"""
if metric == "precomputed":
return X
elif metric in PAIRWISE_DISTANCE_FUNCTIONS:
func = PAIRWISE_DISTANCE_FUNCTIONS[metric]
if n_jobs == 1:
return func(X, Y, **kwds)
else:
return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
elif callable(metric):
# Check matrices first (this is usually done by the metric).
X, Y = check_pairwise_arrays(X, Y)
n_x, n_y = X.shape[0], Y.shape[0]
# Calculate distance for each element in X and Y.
# FIXME: can use n_jobs here too
D = np.zeros((n_x, n_y), dtype='float')
for i in range(n_x):
start = 0
if X is Y:
start = i
for j in range(start, n_y):
# distance assumed to be symmetric.
D[i][j] = metric(X[i], Y[j], **kwds)
if X is Y:
D[j][i] = D[i][j]
return D
else:
# Note: the distance module doesn't support sparse matrices!
if type(X) is csr_matrix:
raise TypeError("scipy distance metrics do not"
" support sparse matrices.")
if Y is None:
return distance.squareform(distance.pdist(X, metric=metric,
**kwds))
else:
if type(Y) is csr_matrix:
raise TypeError("scipy distance metrics do not"
" support sparse matrices.")
return distance.cdist(X, Y, metric=metric, **kwds)
# Helper functions - distance
PAIRWISE_KERNEL_FUNCTIONS = {
# If updating this dictionary, update the doc in both distance_metrics()
# and also in pairwise_distances()!
'additive_chi2': additive_chi2_kernel,
'chi2': chi2_kernel,
'linear': linear_kernel,
'polynomial': polynomial_kernel,
'poly': polynomial_kernel,
'rbf': rbf_kernel,
'sigmoid': sigmoid_kernel,
'cosine': cosine_similarity, }
def kernel_metrics():
""" Valid metrics for pairwise_kernels
This function simply returns the valid pairwise distance metrics.
It exists, however, to allow for a verbose description of the mapping for
each of the valid strings.
The valid distance metrics, and the function they map to, are:
=============== ========================================
metric Function
=============== ========================================
'additive_chi2' sklearn.pairwise.additive_chi2_kernel
'chi2' sklearn.pairwise.chi2_kernel
'linear' sklearn.pairwise.linear_kernel
'poly' sklearn.pairwise.polynomial_kernel
'polynomial' sklearn.pairwise.polynomial_kernel
'rbf' sklearn.pairwise.rbf_kernel
'sigmoid' sklearn.pairwise.sigmoid_kernel
'cosine' sklearn.pairwise.cosine_similarity
=============== ========================================
"""
return PAIRWISE_KERNEL_FUNCTIONS
KERNEL_PARAMS = {
"additive_chi2": (),
"chi2": (),
"cosine": (),
"exp_chi2": frozenset(["gamma"]),
"linear": (),
"poly": frozenset(["gamma", "degree", "coef0"]),
"polynomial": frozenset(["gamma", "degree", "coef0"]),
"rbf": frozenset(["gamma"]),
"sigmoid": frozenset(["gamma", "coef0"]),
}
def pairwise_kernels(X, Y=None, metric="linear", filter_params=False,
n_jobs=1, **kwds):
"""Compute the kernel between arrays X and optional array Y.
This method takes either a vector array or a kernel matrix, and returns
a kernel matrix. If the input is a vector array, the kernels are
computed. If the input is a kernel matrix, it is returned instead.
This method provides a safe way to take a kernel matrix as input, while
preserving compatibility with many other algorithms that take a vector
array.
If Y is given (default is None), then the returned matrix is the pairwise
kernel between the arrays from both X and Y.
Valid values for metric are::
['rbf', 'sigmoid', 'polynomial', 'poly', 'linear', 'cosine']
Parameters
----------
X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \
[n_samples_a, n_features] otherwise
Array of pairwise kernels between samples, or a feature array.
Y : array [n_samples_b, n_features]
A second feature array only if X has shape [n_samples_a, n_features].
metric : string, or callable
The metric to use when calculating kernel between instances in a
feature array. If metric is a string, it must be one of the metrics
in pairwise.PAIRWISE_KERNEL_FUNCTIONS.
If metric is "precomputed", X is assumed to be a kernel matrix.
Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays from X as input and return a value indicating
the distance between them.
n_jobs : int
The number of jobs to use for the computation. This works by breaking
down the pairwise matrix into n_jobs even slices and computing them in
parallel.
If -1 all CPUs are used. If 1 is given, no parallel computing code is
used at all, which is useful for debugging. For n_jobs below -1,
(n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
are used.
filter_params: boolean
Whether to filter invalid parameters or not.
`**kwds` : optional keyword parameters
Any further parameters are passed directly to the kernel function.
Returns
-------
K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]
A kernel matrix K such that K_{i, j} is the kernel between the
ith and jth vectors of the given matrix X, if Y is None.
If Y is not None, then K_{i, j} is the kernel between the ith array
from X and the jth array from Y.
Notes
-----
If metric is 'precomputed', Y is ignored and X is returned.
"""
if metric == "precomputed":
return X
elif metric in PAIRWISE_KERNEL_FUNCTIONS:
if filter_params:
kwds = dict((k, kwds[k]) for k in kwds
if k in KERNEL_PARAMS[metric])
func = PAIRWISE_KERNEL_FUNCTIONS[metric]
if n_jobs == 1:
return func(X, Y, **kwds)
else:
return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
elif callable(metric):
# Check matrices first (this is usually done by the metric).
X, Y = check_pairwise_arrays(X, Y)
n_x, n_y = X.shape[0], Y.shape[0]
# Calculate kernel for each element in X and Y.
K = np.zeros((n_x, n_y), dtype='float')
for i in range(n_x):
start = 0
if X is Y:
start = i
for j in range(start, n_y):
# Kernel assumed to be symmetric.
K[i][j] = metric(X[i], Y[j], **kwds)
if X is Y:
K[j][i] = K[i][j]
return K
else:
raise ValueError("Unknown kernel %r" % metric)
|