This file is indexed.

/usr/share/pyshared/sklearn/metrics/metrics.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
# -*- coding: utf-8 -*-
"""Utilities to evaluate the predictive performance of models

Functions named as ``*_score`` return a scalar value to maximize: the higher
the better

Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize:
the lower the better
"""

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Olivier Grisel <olivier.grisel@ensta.org>
#          Arnaud Joly <a.joly@ulg.ac.be>
#          Jochen Wersdörfer <jochen@wersdoerfer.de>
#          Lars Buitinck <L.J.Buitinck@uva.nl>
# License: BSD 3 clause

from __future__ import division

import warnings
import numpy as np

from scipy.sparse import coo_matrix
from scipy.spatial.distance import hamming as sp_hamming

from ..externals.six.moves import zip
from ..preprocessing import LabelBinarizer
from ..utils import check_arrays
from ..utils import deprecated
from ..utils import column_or_1d
from ..utils.fixes import divide
from ..utils.multiclass import unique_labels
from ..utils.multiclass import type_of_target


###############################################################################
# General utilities
###############################################################################
def _check_reg_targets(y_true, y_pred):
    """Check that y_true and y_pred belong to the same regression task

    Parameters
    ----------
    y_true : array-like,

    y_pred : array-like,

    Returns
    -------
    type_true : one of {'continuous', continuous-multioutput'}
        The type of the true target data, as output by
        ``utils.multiclass.type_of_target``

    y_true : array-like of shape = [n_samples, n_outputs]
        Ground truth (correct) target values.

    y_pred : array-like of shape = [n_samples, n_outputs]
        Estimated target values.
    """
    y_true, y_pred = check_arrays(y_true, y_pred)

    if y_true.ndim == 1:
        y_true = y_true.reshape((-1, 1))

    if y_pred.ndim == 1:
        y_pred = y_pred.reshape((-1, 1))

    if y_true.shape[1] != y_pred.shape[1]:
        raise ValueError("y_true and y_pred have different number of output "
                         "({0}!={1})".format(y_true.shape[1], y_true.shape[1]))

    y_type = 'continuous' if y_true.shape[1] == 1 else 'continuous-multioutput'

    return y_type, y_true, y_pred


def _check_clf_targets(y_true, y_pred):
    """Check that y_true and y_pred belong to the same classification task

    This converts multiclass or binary types to a common shape, and raises a
    ValueError for a mix of multilabel and multiclass targets, a mix of
    multilabel formats, for the presence of continuous-valued or multioutput
    targets, or for targets of different lengths.

    Column vectors are squeezed to 1d.

    Parameters
    ----------
    y_true : array-like,

    y_pred : array-like

    Returns
    -------
    type_true : one of {'multilabel-indicator', 'multilabel-sequences', \
                        'multiclass', 'binary'}
        The type of the true target data, as output by
        ``utils.multiclass.type_of_target``

    y_true : array or indicator matrix or sequence of sequences

    y_pred : array or indicator matrix or sequence of sequences
    """
    y_true, y_pred = check_arrays(y_true, y_pred, allow_lists=True)
    type_true = type_of_target(y_true)
    type_pred = type_of_target(y_pred)

    y_type = set([type_true, type_pred])
    if y_type == set(["binary", "multiclass"]):
        y_type = set(["multiclass"])

    if len(y_type) > 1:
        raise ValueError("Can't handle mix of {0} and {1}"
                         "".format(type_true, type_pred))

    # We can't have more than one value on y_type => The set is no more needed
    y_type = y_type.pop()

    # No metrics support "multiclass-multioutput" format
    if (y_type not in ["binary", "multiclass", "multilabel-indicator",
                       "multilabel-sequences"]):
        raise ValueError("{0} is not supported".format(y_type))

    if y_type in ["binary", "multiclass"]:
        y_true = column_or_1d(y_true)
        y_pred = column_or_1d(y_pred)

    return y_type, y_true, y_pred


def auc(x, y, reorder=False):
    """Compute Area Under the Curve (AUC) using the trapezoidal rule

    This is a general function, given points on a curve.  For computing the
    area under the ROC-curve, see :func:`roc_auc_score`.

    Parameters
    ----------
    x : array, shape = [n]
        x coordinates.

    y : array, shape = [n]
        y coordinates.

    reorder : boolean, optional (default=False)
        If True, assume that the curve is ascending in the case of ties, as for
        an ROC curve. If the curve is non-ascending, the result will be wrong.

    Returns
    -------
    auc : float

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn import metrics
    >>> y = np.array([1, 1, 2, 2])
    >>> pred = np.array([0.1, 0.4, 0.35, 0.8])
    >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
    >>> metrics.auc(fpr, tpr)
    0.75

    See also
    --------
    roc_auc_score : Computes the area under the ROC curve

    precision_recall_curve :
        Compute precision-recall pairs for different probability thresholds

    """
    x, y = check_arrays(x, y)
    if x.shape[0] < 2:
        raise ValueError('At least 2 points are needed to compute'
                         ' area under curve, but x.shape = %s' % x.shape)

    direction = 1
    if reorder:
        # reorder the data points according to the x axis and using y to
        # break ties
        order = np.lexsort((y, x))
        x, y = x[order], y[order]
    else:
        dx = np.diff(x)
        if np.any(dx < 0):
            if np.all(dx <= 0):
                direction = -1
            else:
                raise ValueError("Reordering is not turned on, and "
                                 "the x array is not increasing: %s" % x)

    area = direction * np.trapz(y, x)

    return area


###############################################################################
# Binary classification loss
###############################################################################
def hinge_loss(y_true, pred_decision, pos_label=None, neg_label=None):
    """Average hinge loss (non-regularized)

    Assuming labels in y_true are encoded with +1 and -1, when a prediction
    mistake is made, ``margin = y_true * pred_decision`` is always negative
    (since the signs disagree), implying ``1 - margin`` is always greater than
    1.  The cumulated hinge loss is therefore an upper bound of the number of
    mistakes made by the classifier.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        True target, consisting of integers of two values. The positive label
        must be greater than the negative label.

    pred_decision : array, shape = [n_samples] or [n_samples, n_classes]
        Predicted decisions, as output by decision_function (floats).

    Returns
    -------
    loss : float

    References
    ----------
    .. [1] `Wikipedia entry on the Hinge loss
            <http://en.wikipedia.org/wiki/Hinge_loss>`_

    Examples
    --------
    >>> from sklearn import svm
    >>> from sklearn.metrics import hinge_loss
    >>> X = [[0], [1]]
    >>> y = [-1, 1]
    >>> est = svm.LinearSVC(random_state=0)
    >>> est.fit(X, y)
    LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
         intercept_scaling=1, loss='l2', multi_class='ovr', penalty='l2',
         random_state=0, tol=0.0001, verbose=0)
    >>> pred_decision = est.decision_function([[-2], [3], [0.5]])
    >>> pred_decision  # doctest: +ELLIPSIS
    array([-2.18...,  2.36...,  0.09...])
    >>> hinge_loss([-1, 1, 1], pred_decision)  # doctest: +ELLIPSIS
    0.30...

    """
    if pos_label is not None:
        warnings.warn("'pos_label' is deprecated and will be removed in "
                      "release 0.15.", DeprecationWarning)
    if neg_label is not None:
        warnings.warn("'neg_label' is unused and will be removed in "
                      "release 0.15.", DeprecationWarning)

    # TODO: multi-class hinge-loss

    # the rest of the code assumes that positive and negative labels
    # are encoded as +1 and -1 respectively
    if pos_label is not None:
        y_true = (np.asarray(y_true) == pos_label) * 2 - 1
    else:
        y_true = LabelBinarizer(neg_label=-1).fit_transform(y_true)[:, 0]

    margin = y_true * np.asarray(pred_decision)
    losses = 1 - margin
    # The hinge doesn't penalize good enough predictions.
    losses[losses <= 0] = 0
    return np.mean(losses)


###############################################################################
# Binary classification scores
###############################################################################
def average_precision_score(y_true, y_score):
    """Compute average precision (AP) from prediction scores

    This score corresponds to the area under the precision-recall curve.

    Note: this implementation is restricted to the binary classification task.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        True binary labels.

    y_score : array, shape = [n_samples]
        Target scores, can either be probability estimates of the positive
        class, confidence values, or binary decisions.

    Returns
    -------
    average_precision : float

    References
    ----------
    .. [1] `Wikipedia entry for the Average precision
           <http://en.wikipedia.org/wiki/Average_precision>`_

    See also
    --------
    roc_auc_score : Area under the ROC curve

    precision_recall_curve :
        Compute precision-recall pairs for different probability thresholds

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import average_precision_score
    >>> y_true = np.array([0, 0, 1, 1])
    >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
    >>> average_precision_score(y_true, y_scores)  # doctest: +ELLIPSIS
    0.79...

    """
    precision, recall, thresholds = precision_recall_curve(y_true, y_score)
    return auc(recall, precision)

@deprecated("Function 'auc_score' has been renamed to "
            "'roc_auc_score' and will be removed in release 0.16.")
def auc_score(y_true, y_score):
    """Compute Area Under the Curve (AUC) from prediction scores

    Note: this implementation is restricted to the binary classification task.

    Parameters
    ----------

    y_true : array, shape = [n_samples]
        True binary labels.

    y_score : array, shape = [n_samples]
        Target scores, can either be probability estimates of the positive
        class, confidence values, or binary decisions.

    Returns
    -------
    auc : float

    References
    ----------
    .. [1] `Wikipedia entry for the Receiver operating characteristic
            <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_

    See also
    --------
    average_precision_score : Area under the precision-recall curve

    roc_curve : Compute Receiver operating characteristic (ROC)

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import auc_score
    >>> y_true = np.array([0, 0, 1, 1])
    >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
    >>> auc_score(y_true, y_scores)
    0.75

    """
    return roc_auc_score(y_true, y_score)


def roc_auc_score(y_true, y_score):
    """Compute Area Under the Curve (AUC) from prediction scores

    Note: this implementation is restricted to the binary classification task.

    Parameters
    ----------

    y_true : array, shape = [n_samples]
        True binary labels.

    y_score : array, shape = [n_samples]
        Target scores, can either be probability estimates of the positive
        class, confidence values, or binary decisions.

    Returns
    -------
    auc : float

    References
    ----------
    .. [1] `Wikipedia entry for the Receiver operating characteristic
            <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_

    See also
    --------
    average_precision_score : Area under the precision-recall curve

    roc_curve : Compute Receiver operating characteristic (ROC)

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import roc_auc_score
    >>> y_true = np.array([0, 0, 1, 1])
    >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
    >>> roc_auc_score(y_true, y_scores)
    0.75

    """
    if len(np.unique(y_true)) != 2:
        raise ValueError("AUC is defined for binary classification only")
    fpr, tpr, tresholds = roc_curve(y_true, y_score)
    return auc(fpr, tpr, reorder=True)


def matthews_corrcoef(y_true, y_pred):
    """Compute the Matthews correlation coefficient (MCC) for binary classes

    The Matthews correlation coefficient is used in machine learning as a
    measure of the quality of binary (two-class) classifications. It takes into
    account true and false positives and negatives and is generally regarded as
    a balanced measure which can be used even if the classes are of very
    different sizes. The MCC is in essence a correlation coefficient value
    between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
    an average random prediction and -1 an inverse prediction.  The statistic
    is also known as the phi coefficient. [source: Wikipedia]

    Only in the binary case does this relate to information about true and
    false positives and negatives. See references below.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        Ground truth (correct) target values.

    y_pred : array, shape = [n_samples]
        Estimated targets as returned by a classifier.

    Returns
    -------
    mcc : float
        The Matthews correlation coefficient (+1 represents a perfect
        prediction, 0 an average random prediction and -1 and inverse
        prediction).

    References
    ----------
    .. [1] `Baldi, Brunak, Chauvin, Andersen and Nielsen, (2000). Assessing the
       accuracy of prediction algorithms for classification: an overview
       <http://dx.doi.org/10.1093/bioinformatics/16.5.412>`_

    .. [2] `Wikipedia entry for the Matthews Correlation Coefficient
       <http://en.wikipedia.org/wiki/Matthews_correlation_coefficient>`_

    Examples
    --------
    >>> from sklearn.metrics import matthews_corrcoef
    >>> y_true = [+1, +1, +1, -1]
    >>> y_pred = [+1, -1, +1, +1]
    >>> matthews_corrcoef(y_true, y_pred)  # doctest: +ELLIPSIS
    -0.33...

    """
    y_type, y_true, y_pred = _check_clf_targets(y_true, y_pred)

    if y_type != "binary":
        raise ValueError("%s is not supported" % y_type)

    tp, tn, fp, fn = _tp_tn_fp_fn(y_true, y_pred)
    tp, tn, fp, fn = tp[1], tn[1], fp[1], fn[1]

    num = (tp * tn - fp * fn)
    den = np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
    mcc = num / den

    if np.isnan(mcc):
        return 0.
    else:
        return mcc


def _binary_clf_curve(y_true, y_score, pos_label=None):
    """Calculate true and false positives per binary classification threshold.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        True targets of binary classification

    y_score : array, shape = [n_samples]
        Estimated probabilities or decision function

    pos_label : int, optional (default=1)
        The label of the positive class

    Returns
    -------
    fps : array, shape = [n_thresholds]
        A count of false positives, at index i being the number of negative
        samples assigned a score >= thresholds[i]. The total number of
        negative samples is equal to fps[-1] (thus true negatives are given by
        fps[-1] - fps).

    tps : array, shape = [n_thresholds := len(np.unique(y_score))]
        An increasing count of true positives, at index i being the number
        of positive samples assigned a score >= thresholds[i]. The total
        number of positive samples is equal to tps[-1] (thus false negatives
        are given by tps[-1] - tps).

    thresholds : array, shape = [n_thresholds]
        Decreasing score values.
    """
    y_true, y_score = check_arrays(y_true, y_score)
    y_true = column_or_1d(y_true)
    y_score = column_or_1d(y_score)

    # ensure binary classification if pos_label is not specified
    classes = np.unique(y_true)
    if (pos_label is None and
        not (np.all(classes == [0, 1]) or
             np.all(classes == [-1, 1]) or
             np.all(classes == [0]) or
             np.all(classes == [-1]) or
             np.all(classes == [1]))):
        raise ValueError("Data is not binary and pos_label is not specified")
    elif pos_label is None:
        pos_label = 1.

    # make y_true a boolean vector
    y_true = (y_true == pos_label)

    # Sort scores and corresponding truth values
    desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1]
    y_score = y_score[desc_score_indices]
    y_true = y_true[desc_score_indices]

    # y_score typically has many tied values. Here we extract
    # the indices associated with the distinct values. We also
    # concatenate a value for the end of the curve.
    distinct_value_indices = np.where(np.diff(y_score))[0]
    threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1]

    # accumulate the true positives with decreasing threshold
    tps = y_true.cumsum()[threshold_idxs]
    fps = 1 + threshold_idxs - tps
    return fps, tps, y_score[threshold_idxs]


def precision_recall_curve(y_true, probas_pred, pos_label=None):
    """Compute precision-recall pairs for different probability thresholds

    Note: this implementation is restricted to the binary classification task.

    The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of
    true positives and ``fp`` the number of false positives. The precision is
    intuitively the ability of the classifier not to label as positive a sample
    that is negative.

    The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of
    true positives and ``fn`` the number of false negatives. The recall is
    intuitively the ability of the classifier to find all the positive samples.

    The last precision and recall values are 1. and 0. respectively and do not
    have a corresponding threshold.  This ensures that the graph starts on the
    x axis.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        True targets of binary classification in range {-1, 1} or {0, 1}.

    probas_pred : array, shape = [n_samples]
        Estimated probabilities or decision function.

    Returns
    -------
    precision : array, shape = [n_thresholds + 1]
        Precision values such that element i is the precision of
        predictions with score >= thresholds[i] and the last element is 1.

    recall : array, shape = [n_thresholds + 1]
        Decreasing recall values such that element i is the recall of
        predictions with score >= thresholds[i] and the last element is 0.

    thresholds : array, shape = [n_thresholds := len(np.unique(probas_pred))]
        Increasing thresholds on the decision function used to compute
        precision and recall.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import precision_recall_curve
    >>> y_true = np.array([0, 0, 1, 1])
    >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
    >>> precision, recall, thresholds = precision_recall_curve(
    ...     y_true, y_scores)
    >>> precision  # doctest: +ELLIPSIS
    array([ 0.66...,  0.5       ,  1.        ,  1.        ])
    >>> recall
    array([ 1. ,  0.5,  0.5,  0. ])
    >>> thresholds
    array([ 0.35,  0.4 ,  0.8 ])

    """
    fps, tps, thresholds = _binary_clf_curve(y_true, probas_pred)

    precision = tps / (tps + fps)
    recall = tps / tps[-1]

    # stop when full recall attained
    # and reverse the outputs so recall is decreasing
    last_ind = tps.searchsorted(tps[-1])
    sl = slice(last_ind, None, -1)
    return np.r_[precision[sl], 1], np.r_[recall[sl], 0], thresholds[sl]


def roc_curve(y_true, y_score, pos_label=None):
    """Compute Receiver operating characteristic (ROC)

    Note: this implementation is restricted to the binary classification task.

    Parameters
    ----------

    y_true : array, shape = [n_samples]
        True binary labels in range {0, 1} or {-1, 1}.  If labels are not
        binary, pos_label should be explicitly given.

    y_score : array, shape = [n_samples]
        Target scores, can either be probability estimates of the positive
        class, confidence values, or binary decisions.

    pos_label : int
        Label considered as positive and others are considered negative.

    Returns
    -------
    fpr : array, shape = [>2]
        Increasing false positive rates such that element i is the false
        positive rate of predictions with score >= thresholds[i].

    tpr : array, shape = [>2]
        Increasing false positive rates such that element i is the true
        positive rate of predictions with score >= thresholds[i].

    thresholds : array, shape = [n_thresholds]
        Decreasing thresholds on the decision function used to compute
        fpr and tpr.

    See also
    --------
    roc_auc_score : Compute Area Under the Curve (AUC) from prediction scores

    Notes
    -----
    Since the thresholds are sorted from low to high values, they
    are reversed upon returning them to ensure they correspond to both ``fpr``
    and ``tpr``, which are sorted in reversed order during their calculation.

    References
    ----------
    .. [1] `Wikipedia entry for the Receiver operating characteristic
            <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_


    Examples
    --------
    >>> import numpy as np
    >>> from sklearn import metrics
    >>> y = np.array([1, 1, 2, 2])
    >>> scores = np.array([0.1, 0.4, 0.35, 0.8])
    >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
    >>> fpr
    array([ 0. ,  0.5,  0.5,  1. ])
    >>> tpr
    array([ 0.5,  0.5,  1. ,  1. ])
    >>> thresholds
    array([ 0.8 ,  0.4 ,  0.35,  0.1 ])

    """
    fps, tps, thresholds = _binary_clf_curve(y_true, y_score, pos_label)

    if tps.size == 0 or fps[0] != 0:
        # Add an extra threshold position if necessary
        tps = np.r_[0, tps]
        fps = np.r_[0, fps]
        thresholds = np.r_[thresholds[0] + 1, thresholds]

    if fps[-1] == 0:
        warnings.warn("No negative samples in y_true, "
                      "false positive value should be meaningless")
        fpr = np.repeat(np.nan, fps.shape)
    else:
        fpr = fps / fps[-1]

    if tps[-1] == 0:
        warnings.warn("No positive samples in y_true, "
                      "true positive value should be meaningless")
        tpr = np.repeat(np.nan, tps.shape)
    else:
        tpr = tps / tps[-1]

    return fpr, tpr, thresholds


##############################################################################
# Multiclass general function
###############################################################################
def confusion_matrix(y_true, y_pred, labels=None):
    """Compute confusion matrix to evaluate the accuracy of a classification

    By definition a confusion matrix :math:`C` is such that :math:`C_{i, j}`
    is equal to the number of observations known to be in group :math:`i` but
    predicted to be in group :math:`j`.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        Ground truth (correct) target values.

    y_pred : array, shape = [n_samples]
        Estimated targets as returned by a classifier.

    labels : array, shape = [n_classes], optional
        List of labels to index the matrix. This may be used to reorder
        or select a subset of labels.
        If none is given, those that appear at least once
        in ``y_true`` or ``y_pred`` are used in sorted order.

    Returns
    -------
    C : array, shape = [n_classes, n_classes]
        Confusion matrix

    References
    ----------
    .. [1] `Wikipedia entry for the Confusion matrix
           <http://en.wikipedia.org/wiki/Confusion_matrix>`_

    Examples
    --------
    >>> from sklearn.metrics import confusion_matrix
    >>> y_true = [2, 0, 2, 2, 0, 1]
    >>> y_pred = [0, 0, 2, 2, 0, 2]
    >>> confusion_matrix(y_true, y_pred)
    array([[2, 0, 0],
           [0, 0, 1],
           [1, 0, 2]])

    """
    y_type, y_true, y_pred = _check_clf_targets(y_true, y_pred)
    if y_type not in ("binary", "multiclass"):
        raise ValueError("%s is not supported" % y_type)

    if labels is None:
        labels = unique_labels(y_true, y_pred)
    else:
        labels = np.asarray(labels)

    n_labels = labels.size
    label_to_ind = dict((y, x) for x, y in enumerate(labels))
    # convert yt, yp into index
    y_pred = np.array([label_to_ind.get(x, n_labels + 1) for x in y_pred])
    y_true = np.array([label_to_ind.get(x, n_labels + 1) for x in y_true])

    # intersect y_pred, y_true with labels, eliminate items not in labels
    ind = np.logical_and(y_pred < n_labels, y_true < n_labels)
    y_pred = y_pred[ind]
    y_true = y_true[ind]

    CM = np.asarray(
        coo_matrix(
            (np.ones(y_true.shape[0], dtype=np.int), (y_true, y_pred)),
            shape=(n_labels, n_labels)
        ).todense()
    )

    return CM


###############################################################################
# Multiclass loss function
###############################################################################
def zero_one_loss(y_true, y_pred, normalize=True):
    """Zero-one classification loss.

    If normalize is ``True``, return the fraction of misclassifications
    (float), else it returns the number of misclassifications (int). The best
    performance is 0.

    Parameters
    ----------
    y_true : array-like or list of labels or label indicator matrix
        Ground truth (correct) labels.

    y_pred : array-like or list of labels or label indicator matrix
        Predicted labels, as returned by a classifier.

    normalize : bool, optional (default=True)
        If ``False``, return the number of misclassifications.
        Otherwise, return the fraction of misclassifications.

    Returns
    -------
    loss : float or int,
        If ``normalize == True``, return the fraction of misclassifications
        (float), else it returns the number of misclassifications (int).

    Notes
    -----
    In multilabel classification, the zero_one_loss function corresponds to
    the subset zero-one loss: for each sample, the entire set of labels must be
    correctly predicted, otherwise the loss for that sample is equal to one.

    See also
    --------
    accuracy_score, hamming_loss, jaccard_similarity_score

    Examples
    --------
    >>> from sklearn.metrics import zero_one_loss
    >>> y_pred = [1, 2, 3, 4]
    >>> y_true = [2, 2, 3, 4]
    >>> zero_one_loss(y_true, y_pred)
    0.25
    >>> zero_one_loss(y_true, y_pred, normalize=False)
    1

    In the multilabel case with binary indicator format:

    >>> zero_one_loss(np.array([[0.0, 1.0], [1.0, 1.0]]), np.ones((2, 2)))
    0.5

    and with a list of labels format:

    >>> zero_one_loss([(1, ), (3, )], [(1, 2), tuple()])
    1.0


    """
    score = accuracy_score(y_true, y_pred,
                           normalize=normalize)

    if normalize:
        return 1 - score
    else:
        n_samples = len(y_true)
        return n_samples - score


@deprecated("Function 'zero_one' has been renamed to "
            "'zero_one_loss' and will be removed in release 0.15."
            "Default behavior is changed from 'normalize=False' to "
            "'normalize=True'")
def zero_one(y_true, y_pred, normalize=False):
    """Zero-One classification loss

    If normalize is ``True``, return the fraction of misclassifications
    (float), else it returns the number of misclassifications (int). The best
    performance is 0.

    Parameters
    ----------
    y_true : array-like

    y_pred : array-like

    normalize : bool, optional (default=False)
        If ``False`` (default), return the number of misclassifications.
        Otherwise, return the fraction of misclassifications.

    Returns
    -------
    loss : float
        If normalize is True, return the fraction of misclassifications
        (float), else it returns the number of misclassifications (int).


    Examples
    --------
    >>> from sklearn.metrics import zero_one
    >>> y_pred = [1, 2, 3, 4]
    >>> y_true = [2, 2, 3, 4]
    >>> zero_one(y_true, y_pred)
    1
    >>> zero_one(y_true, y_pred, normalize=True)
    0.25

    """
    return zero_one_loss(y_true, y_pred, normalize)


###############################################################################
# Multiclass score functions
###############################################################################

def jaccard_similarity_score(y_true, y_pred, normalize=True):
    """Jaccard similarity coefficient score

    The Jaccard index [1], or Jaccard similarity coefficient, defined as
    the size of the intersection divided by the size of the union of two label
    sets, is used to compare set of predicted labels for a sample to the
    corresponding set of labels in ``y_true``.

    Parameters
    ----------
    y_true : array-like or list of labels or label indicator matrix
        Ground truth (correct) labels.

    y_pred : array-like or list of labels or label indicator matrix
        Predicted labels, as returned by a classifier.

    normalize : bool, optional (default=True)
        If ``False``, return the sum of the Jaccard similarity coefficient
        over the sample set. Otherwise, return the average of Jaccard
        similarity coefficient.

    Returns
    -------
    score : float
        If ``normalize == True``, return the average Jaccard similarity
        coefficient, else it returns the sum of the Jaccard similarity
        coefficient over the sample set.

        The best performance is 1 with ``normalize == True`` and the number
        of samples with ``normalize == False``.

    See also
    --------
    accuracy_score, hamming_loss, zero_one_loss

    Notes
    -----
    In binary and multiclass classification, this function is equivalent
    to the ``accuracy_score``. It differs in the multilabel classification
    problem.

    References
    ----------
    .. [1] `Wikipedia entry for the Jaccard index
           <http://en.wikipedia.org/wiki/Jaccard_index>`_


    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import jaccard_similarity_score
    >>> y_pred = [0, 2, 1, 3]
    >>> y_true = [0, 1, 2, 3]
    >>> jaccard_similarity_score(y_true, y_pred)
    0.5
    >>> jaccard_similarity_score(y_true, y_pred, normalize=False)
    2

    In the multilabel case with binary indicator format:

    >>> jaccard_similarity_score(np.array([[0.0, 1.0], [1.0, 1.0]]),\
        np.ones((2, 2)))
    0.75

    and with a list of labels format:

    >>> jaccard_similarity_score([(1, ), (3, )], [(1, 2), tuple()])
    0.25

    """

    # Compute accuracy for each possible representation
    y_type, y_true, y_pred = _check_clf_targets(y_true, y_pred)
    if y_type == 'multilabel-indicator':
        with np.errstate(divide='ignore', invalid='ignore'):
            # oddly, we may get an "invalid" rather than a "divide"
            # error here
            y_pred_pos_label = y_pred == 1
            y_true_pos_label = y_true == 1
            pred_inter_true = np.sum(np.logical_and(y_pred_pos_label,
                                                    y_true_pos_label),
                                     axis=1)
            pred_union_true = np.sum(np.logical_or(y_pred_pos_label,
                                                   y_true_pos_label),
                                     axis=1)
            score = pred_inter_true / pred_union_true

            # If there is no label, it results in a Nan instead, we set
            # the jaccard to 1: lim_{x->0} x/x = 1
            # Note with py2.6 and np 1.3: we can't check safely for nan.
            score[pred_union_true == 0.0] = 1.0

    elif y_type == 'multilabel-sequences':
        score = np.empty(len(y_true), dtype=np.float)
        for i, (true, pred) in enumerate(zip(y_pred, y_true)):
            true_set = set(true)
            pred_set = set(pred)
            size_true_union_pred = len(true_set | pred_set)
            # If there is no label, it results in a Nan instead, we set
            # the jaccard to 1: lim_{x->0} x/x = 1
            if size_true_union_pred == 0:
                score[i] = 1.
            else:
                score[i] = (len(true_set & pred_set) /
                            size_true_union_pred)
    else:
        score = y_true == y_pred

    if normalize:
        return np.mean(score)
    else:
        return np.sum(score)


def accuracy_score(y_true, y_pred, normalize=True):
    """Accuracy classification score.

    In multilabel classification, this function computes subset accuracy:
    the set of labels predicted for a sample must *exactly* match the
    corresponding set of labels in y_true.

    Parameters
    ----------
    y_true : array-like or list of labels or label indicator matrix
        Ground truth (correct) labels.

    y_pred : array-like or list of labels or label indicator matrix
        Predicted labels, as returned by a classifier.

    normalize : bool, optional (default=True)
        If ``False``, return the number of correctly classified samples.
        Otherwise, return the fraction of correctly classified samples.

    Returns
    -------
    score : float
        If ``normalize == True``, return the correctly classified samples
        (float), else it returns the number of correctly classified samples
        (int).

        The best performance is 1 with ``normalize == True`` and the number
        of samples with ``normalize == False``.

    See also
    --------
    jaccard_similarity_score, hamming_loss, zero_one_loss

    Notes
    -----
    In binary and multiclass classification, this function is equal
    to the ``jaccard_similarity_score`` function.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import accuracy_score
    >>> y_pred = [0, 2, 1, 3]
    >>> y_true = [0, 1, 2, 3]
    >>> accuracy_score(y_true, y_pred)
    0.5
    >>> accuracy_score(y_true, y_pred, normalize=False)
    2

    In the multilabel case with binary indicator format:

    >>> accuracy_score(np.array([[0.0, 1.0], [1.0, 1.0]]), np.ones((2, 2)))
    0.5

    and with a list of labels format:

    >>> accuracy_score([(1, ), (3, )], [(1, 2), tuple()])
    0.0

    """

    # Compute accuracy for each possible representation
    y_type, y_true, y_pred = _check_clf_targets(y_true, y_pred)
    if y_type == 'multilabel-indicator':
        score = (y_pred != y_true).sum(axis=1) == 0
    elif y_type == 'multilabel-sequences':
        score = np.array([len(set(true) ^ set(pred)) == 0
                          for pred, true in zip(y_pred, y_true)])
    else:
        score = y_true == y_pred

    if normalize:
        return np.mean(score)
    else:
        return np.sum(score)


def f1_score(y_true, y_pred, labels=None, pos_label=1, average='weighted'):
    """Compute the F1 score, also known as balanced F-score or F-measure

    The F1 score can be interpreted as a weighted average of the precision and
    recall, where an F1 score reaches its best value at 1 and worst score at 0.
    The relative contribution of precision and recall to the F1 score are
    equal. The formula for the F1 score is::

        F1 = 2 * (precision * recall) / (precision + recall)

    In the multi-class and multi-label case, this is the weighted average of
    the F1 score of each class.

    Parameters
    ----------
    y_true : array-like or list of labels or label indicator matrix
        Ground truth (correct) target values.

    y_pred : array-like or list of labels or label indicator matrix
        Estimated targets as returned by a classifier.

    labels : array
        Integer array of labels.

    pos_label : str or int, 1 by default
        If ``average`` is not ``None`` and the classification target is binary,
        only this class's scores will be returned.

    average : string, [None, 'micro', 'macro', 'samples', 'weighted' (default)]
        If ``None``, the scores for each class are returned. Otherwise,
        unless ``pos_label`` is given in binary classification, this
        determines the type of averaging performed on the data:

        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average, weighted
            by support (the number of true instances for each label). This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall.
        ``'samples'``:
            Calculate metrics for each instance, and find their average (only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`).


    Returns
    -------
    f1_score : float or array of float, shape = [n_unique_labels]
        F1 score of the positive class in binary classification or weighted
        average of the F1 scores of each class for the multiclass task.

    References
    ----------
    .. [1] `Wikipedia entry for the F1-score
           <http://en.wikipedia.org/wiki/F1_score>`_

    Examples
    --------
    >>> from sklearn.metrics import f1_score
    >>> y_true = [0, 1, 2, 0, 1, 2]
    >>> y_pred = [0, 2, 1, 0, 0, 1]
    >>> f1_score(y_true, y_pred, average='macro')  # doctest: +ELLIPSIS
    0.26...
    >>> f1_score(y_true, y_pred, average='micro')  # doctest: +ELLIPSIS
    0.33...
    >>> f1_score(y_true, y_pred, average='weighted')  # doctest: +ELLIPSIS
    0.26...
    >>> f1_score(y_true, y_pred, average=None)
    array([ 0.8,  0. ,  0. ])


    """
    return fbeta_score(y_true, y_pred, 1, labels=labels,
                       pos_label=pos_label, average=average)


def fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1,
                average='weighted'):
    """Compute the F-beta score

    The F-beta score is the weighted harmonic mean of precision and recall,
    reaching its optimal value at 1 and its worst value at 0.

    The `beta` parameter determines the weight of precision in the combined
    score. ``beta < 1`` lends more weight to precision, while ``beta > 1``
    favors recall (``beta -> 0`` considers only precision, ``beta -> inf``
    only recall).

    Parameters
    ----------
    y_true : array-like or list of labels or label indicator matrix
        Ground truth (correct) target values.

    y_pred : array-like or list of labels or label indicator matrix
        Estimated targets as returned by a classifier.

    beta: float
        Weight of precision in harmonic mean.

    labels : array
        Integer array of labels.

    pos_label : str or int, 1 by default
        If ``average`` is not ``None`` and the classification target is binary,
        only this class's scores will be returned.

    average : string, [None, 'micro', 'macro', 'samples', 'weighted' (default)]
        If ``None``, the scores for each class are returned. Otherwise,
        unless ``pos_label`` is given in binary classification, this
        determines the type of averaging performed on the data:

        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average, weighted
            by support (the number of true instances for each label). This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall.
        ``'samples'``:
            Calculate metrics for each instance, and find their average (only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`).

    Returns
    -------
    fbeta_score : float (if average is not None) or array of float, shape =\
        [n_unique_labels]
        F-beta score of the positive class in binary classification or weighted
        average of the F-beta score of each class for the multiclass task.

    References
    ----------
    .. [1] R. Baeza-Yates and B. Ribeiro-Neto (2011).
           Modern Information Retrieval. Addison Wesley, pp. 327-328.

    .. [2] `Wikipedia entry for the F1-score
           <http://en.wikipedia.org/wiki/F1_score>`_

    Examples
    --------
    >>> from sklearn.metrics import fbeta_score
    >>> y_true = [0, 1, 2, 0, 1, 2]
    >>> y_pred = [0, 2, 1, 0, 0, 1]
    >>> fbeta_score(y_true, y_pred, average='macro', beta=0.5)
    ... # doctest: +ELLIPSIS
    0.23...
    >>> fbeta_score(y_true, y_pred, average='micro', beta=0.5)
    ... # doctest: +ELLIPSIS
    0.33...
    >>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5)
    ... # doctest: +ELLIPSIS
    0.23...
    >>> fbeta_score(y_true, y_pred, average=None, beta=0.5)
    ... # doctest: +ELLIPSIS
    array([ 0.71...,  0.        ,  0.        ])

    """
    _, _, f, _ = precision_recall_fscore_support(y_true, y_pred,
                                                 beta=beta,
                                                 labels=labels,
                                                 pos_label=pos_label,
                                                 average=average)
    return f


def _tp_tn_fp_fn(y_true, y_pred, labels=None):
    """Compute the number of true/false positives/negative for each class

    Parameters
    ----------
    y_true : array-like or list of labels or label indicator matrix
        Ground truth (correct) labels.

    y_pred : array-like or list of labels or label indicator matrix
        Predicted labels, as returned by a classifier.

    labels : array, shape = [n_labels], optional
        Integer array of labels.

    Returns
    -------
    true_pos : array of int, shape = [n_unique_labels]
        Number of true positives

    true_neg : array of int, shape = [n_unique_labels]
        Number of true negative

    false_pos : array of int, shape = [n_unique_labels]
        Number of false positives

    false_pos : array of int, shape = [n_unique_labels]
        Number of false positives

    Examples
    --------
    In the binary case:

    >>> from sklearn.metrics.metrics import _tp_tn_fp_fn
    >>> y_pred = [0, 1, 0, 0]
    >>> y_true = [0, 1, 0, 1]
    >>> _tp_tn_fp_fn(y_true, y_pred)
    (array([2, 1]), array([1, 2]), array([1, 0]), array([0, 1]))

    In the multiclass case:
    >>> y_true = np.array([0, 1, 2, 0, 1, 2])
    >>> y_pred = np.array([0, 2, 1, 0, 0, 1])
    >>> _tp_tn_fp_fn(y_true, y_pred)
    (array([2, 0, 0]), array([3, 2, 3]), array([1, 2, 1]), array([0, 2, 2]))

    In the multilabel case with binary indicator format:

    >>> _tp_tn_fp_fn(np.array([[0.0, 1.0], [1.0, 1.0]]), np.zeros((2, 2)))
    (array([0, 0]), array([1, 0]), array([0, 0]), array([1, 2]))

    and with a list of labels format:

    >>> _tp_tn_fp_fn([(1, 2), (3, )], [(1, 2), tuple()])  # doctest: +ELLIPSIS
    (array([1, 1, 0]), array([1, 1, 1]), array([0, 0, 0]), array([0, 0, 1]))

    """
    y_type, y_true, y_pred = _check_clf_targets(y_true, y_pred)

    if labels is None:
        labels = unique_labels(y_true, y_pred)
    else:
        labels = np.asarray(labels)

    n_labels = labels.size
    true_pos = np.zeros((n_labels, ), dtype=np.int)
    false_pos = np.zeros((n_labels, ), dtype=np.int)
    false_neg = np.zeros((n_labels, ), dtype=np.int)

    if y_type == 'multilabel-indicator':
        true_pos = np.sum(np.logical_and(y_true == 1,
                                         y_pred == 1), axis=0)
        false_pos = np.sum(np.logical_and(y_true != 1,
                                          y_pred == 1), axis=0)
        false_neg = np.sum(np.logical_and(y_true == 1,
                                          y_pred != 1), axis=0)

    elif y_type == 'multilabel-sequences':
        idx_to_label = dict((label_i, i)
                            for i, label_i in enumerate(labels))

        for true, pred in zip(y_true, y_pred):
            true_set = np.array([idx_to_label[l] for l in set(true)],
                                dtype=np.int)
            pred_set = np.array([idx_to_label[l] for l in set(pred)],
                                dtype=np.int)
            true_pos[np.intersect1d(true_set, pred_set)] += 1
            false_pos[np.setdiff1d(pred_set, true_set)] += 1
            false_neg[np.setdiff1d(true_set, pred_set)] += 1

    else:
        for i, label_i in enumerate(labels):
            true_pos[i] = np.sum(y_pred[y_true == label_i] == label_i)
            false_pos[i] = np.sum(y_pred[y_true != label_i] == label_i)
            false_neg[i] = np.sum(y_pred[y_true == label_i] != label_i)

    # Compute the true_neg using the tp, fp and fn
    n_samples = len(y_true)
    true_neg = n_samples - true_pos - false_pos - false_neg

    return true_pos, true_neg, false_pos, false_neg


def precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None,
                                    pos_label=1, average=None):
    """Compute precision, recall, F-measure and support for each class

    The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of
    true positives and ``fp`` the number of false positives. The precision is
    intuitively the ability of the classifier not to label as positive a sample
    that is negative.

    The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of
    true positives and ``fn`` the number of false negatives. The recall is
    intuitively the ability of the classifier to find all the positive samples.

    The F-beta score can be interpreted as a weighted harmonic mean of
    the precision and recall, where an F-beta score reaches its best
    value at 1 and worst score at 0.

    The F-beta score weights recall more than precision by a factor of
    ``beta``. ``beta == 1.0`` means recall and precision are equally important.

    The support is the number of occurrences of each class in ``y_true``.

    If ``pos_label is None`` and in binary classification, this function
    returns the average precision, recall and F-measure if ``average``
    is one of ``'micro'``, ``'macro'``, ``'weighted'`` or ``'samples'``.

    Parameters
    ----------
    y_true : array-like or list of labels or label indicator matrix
        Ground truth (correct) target values.

    y_pred : array-like or list of labels or label indicator matrix
        Estimated targets as returned by a classifier.

    beta : float, 1.0 by default
        The strength of recall versus precision in the F-score.

    labels : array
        Integer array of labels.

    pos_label : str or int, 1 by default
        If ``average`` is not ``None`` and the classification target is binary,
        only this class's scores will be returned.

    average : string, [None (default), 'micro', 'macro', 'samples', 'weighted']
        If ``None``, the scores for each class are returned. Otherwise,
        unless ``pos_label`` is given in binary classification, this
        determines the type of averaging performed on the data:

        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average, weighted
            by support (the number of true instances for each label). This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall.
        ``'samples'``:
            Calculate metrics for each instance, and find their average (only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`).


    Returns
    -------
    precision: float (if average is not None) or array of float, shape =\
        [n_unique_labels]

    recall: float (if average is not None) or array of float, , shape =\
        [n_unique_labels]

    fbeta_score: float (if average is not None) or array of float, shape =\
        [n_unique_labels]

    support: int (if average is not None) or array of int, shape =\
        [n_unique_labels]
        The number of occurrences of each label in ``y_true``.

    References
    ----------
    .. [1] `Wikipedia entry for the Precision and recall
           <http://en.wikipedia.org/wiki/Precision_and_recall>`_

    .. [2] `Wikipedia entry for the F1-score
           <http://en.wikipedia.org/wiki/F1_score>`_

    .. [3] `Discriminative Methods for Multi-labeled Classification Advances
           in Knowledge Discovery and Data Mining (2004), pp. 22-30 by Shantanu
           Godbole, Sunita Sarawagi
           <http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf>`

    Examples
    --------
    >>> from sklearn.metrics import precision_recall_fscore_support
    >>> y_true = np.array([0, 1, 2, 0, 1, 2])
    >>> y_pred = np.array([0, 2, 1, 0, 0, 1])
    >>> precision_recall_fscore_support(y_true, y_pred, average='macro')
    ... # doctest: +ELLIPSIS
    (0.22..., 0.33..., 0.26..., None)
    >>> precision_recall_fscore_support(y_true, y_pred, average='micro')
    ... # doctest: +ELLIPSIS
    (0.33..., 0.33..., 0.33..., None)
    >>> precision_recall_fscore_support(y_true, y_pred, average='weighted')
    ... # doctest: +ELLIPSIS
    (0.22..., 0.33..., 0.26..., None)

    """
    if beta <= 0:
        raise ValueError("beta should be >0 in the F-beta score")
    beta2 = beta ** 2

    y_type, y_true, y_pred = _check_clf_targets(y_true, y_pred)

    if labels is None:
        labels = unique_labels(y_true, y_pred)
    else:
        labels = np.asarray(labels)

    if average == "samples":
        if y_type == 'multilabel-indicator':
            y_true_pos_label = y_true == 1
            y_pred_pos_label = y_pred == 1
            size_inter = np.sum(np.logical_and(y_true_pos_label,
                                               y_pred_pos_label), axis=1)
            size_true = np.sum(y_true_pos_label, axis=1)
            size_pred = np.sum(y_pred_pos_label, axis=1)

        elif y_type == 'multilabel-sequences':
            size_inter = np.empty(len(y_true), dtype=np.int)
            size_true = np.empty(len(y_true), dtype=np.int)
            size_pred = np.empty(len(y_true), dtype=np.int)
            for i, (true, pred) in enumerate(zip(y_true, y_pred)):
                true_set = set(true)
                pred_set = set(pred)
                size_inter[i] = len(true_set & pred_set)
                size_pred[i] = len(pred_set)
                size_true[i] = len(true_set)
        else:
            raise ValueError("Example-based precision, recall, fscore is "
                             "not meaningful outside of multilabel"
                             "classification. Use accuracy_score instead.")

        warning_msg = ""
        if np.any(size_pred == 0):
            warning_msg += ("Sample-based precision is undefined for some "
                            "samples. ")

        if np.any(size_true == 0):
            warning_msg += ("Sample-based recall is undefined for some "
                            "samples. ")

        if np.any((beta2 * size_true + size_pred) == 0):
            warning_msg += ("Sample-based f_score is undefined for some "
                            "samples. ")

        if warning_msg:
            warnings.warn(warning_msg)

        with np.errstate(divide="ignore", invalid="ignore"):
            # oddly, we may get an "invalid" rather than a "divide" error
            # here
            precision = divide(size_inter, size_pred, dtype=np.double)
            recall = divide(size_inter, size_true, dtype=np.double)
            f_score = divide((1 + beta2) * size_inter,
                             (beta2 * size_true + size_pred),
                             dtype=np.double)

        precision[size_pred == 0] = 0.0
        recall[size_true == 0] = 0.0
        f_score[(beta2 * size_true + size_pred) == 0] = 0.0

        precision = np.mean(precision)
        recall = np.mean(recall)
        f_score = np.mean(f_score)

        return precision, recall, f_score, None

    true_pos, _, false_pos, false_neg = _tp_tn_fp_fn(y_true, y_pred, labels)
    support = true_pos + false_neg

    with np.errstate(divide='ignore', invalid='ignore'):
        # oddly, we may get an "invalid" rather than a "divide" error here

        # precision and recall
        precision = divide(true_pos.astype(np.float), true_pos + false_pos)
        recall = divide(true_pos.astype(np.float), true_pos + false_neg)

        idx_ill_defined_precision = (true_pos + false_pos) == 0
        idx_ill_defined_recall = (true_pos + false_neg) == 0

        # handle division by 0 in precision and recall
        precision[idx_ill_defined_precision] = 0.0
        recall[idx_ill_defined_recall] = 0.0

        # fbeta score
        fscore = divide((1 + beta2) * precision * recall,
                        beta2 * precision + recall)

        # handle division by 0 in fscore
        idx_ill_defined_fbeta_score = (beta2 * precision + recall) == 0
        fscore[idx_ill_defined_fbeta_score] = 0.0

    if average in (None, "macro", "weighted"):
        warning_msg = ""
        if np.any(idx_ill_defined_precision):
            warning_msg += ("The sum of true positives and false positives "
                            "are equal to zero for some labels. Precision is "
                            "ill defined for those labels %s. "
                            % labels[idx_ill_defined_precision])

        if np.any(idx_ill_defined_recall):
            warning_msg += ("The sum of true positives and false negatives "
                            "are equal to zero for some labels. Recall is ill "
                            "defined for those labels %s. "
                            % labels[idx_ill_defined_recall])

        if np.any(idx_ill_defined_fbeta_score):
            warning_msg += ("The precision and recall are equal to zero for "
                            "some labels. fbeta_score is ill defined for "
                            "those labels %s. "
                            % labels[idx_ill_defined_fbeta_score])

        if warning_msg:
            warnings.warn(warning_msg, stacklevel=2)

    if not average:
        return precision, recall, fscore, support

    elif y_type == 'binary' and pos_label is not None:
        if pos_label not in labels:
            if len(labels) == 1:
                # Only negative labels
                return (0., 0., 0., 0)
            raise ValueError("pos_label=%r is not a valid label: %r" %
                             (pos_label, list(labels)))
        pos_label_idx = list(labels).index(pos_label)
        return (precision[pos_label_idx], recall[pos_label_idx],
                fscore[pos_label_idx], support[pos_label_idx])
    else:
        average_options = (None, 'micro', 'macro', 'weighted', 'samples')
        if average == 'micro':
            with np.errstate(divide='ignore', invalid='ignore'):
                # oddly, we may get an "invalid" rather than a "divide" error
                # here

                tp_sum = true_pos.sum()
                fp_sum = false_pos.sum()
                fn_sum = false_neg.sum()
                avg_precision = divide(tp_sum, tp_sum + fp_sum,
                                       dtype=np.double)
                avg_recall = divide(tp_sum, tp_sum + fn_sum, dtype=np.double)
                avg_fscore = divide((1 + beta2) * (avg_precision * avg_recall),
                                    beta2 * avg_precision + avg_recall,
                                    dtype=np.double)

            warning_msg = ""
            if tp_sum + fp_sum == 0:
                avg_precision = 0.
                warning_msg += ("The sum of true positives and false "
                                "positives are equal to zero. Micro-precision"
                                " is ill defined. ")

            if tp_sum + fn_sum == 0:
                avg_recall = 0.
                warning_msg += ("The sum of true positives and false "
                                "negatives are equal to zero. Micro-recall "
                                "is ill defined. ")

            if beta2 * avg_precision + avg_recall == 0:
                avg_fscore = 0.
                warning_msg += ("Micro-precision and micro-recall are equal "
                                "to zero. Micro-fbeta_score is ill defined.")

            if warning_msg:
                warnings.warn(warning_msg, stacklevel=2)

        elif average == 'macro':
            avg_precision = np.mean(precision)
            avg_recall = np.mean(recall)
            avg_fscore = np.mean(fscore)

        elif average == 'weighted':
            if np.all(support == 0):
                avg_precision = 0.
                avg_recall = 0.
                avg_fscore = 0.
                warnings.warn("There isn't any labels in y_true. "
                              "Weighted-precision, weighted-recall and "
                              "weighted-fbeta_score are ill defined.",
                              stacklevel=2)

            else:
                avg_precision = np.average(precision, weights=support)
                avg_recall = np.average(recall, weights=support)
                avg_fscore = np.average(fscore, weights=support)

        else:
            raise ValueError('average has to be one of ' +
                             str(average_options))

        return avg_precision, avg_recall, avg_fscore, None


def precision_score(y_true, y_pred, labels=None, pos_label=1,
                    average='weighted'):
    """Compute the precision

    The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of
    true positives and ``fp`` the number of false positives. The precision is
    intuitively the ability of the classifier not to label as positive a sample
    that is negative.

    The best value is 1 and the worst value is 0.

    Parameters
    ----------
    y_true : array-like or list of labels or label indicator matrix
        Ground truth (correct) target values.

    y_pred : array-like or list of labels or label indicator matrix
        Estimated targets as returned by a classifier.

    labels : array
        Integer array of labels.

    pos_label : str or int, 1 by default
        If ``average`` is not ``None`` and the classification target is binary,
        only this class's scores will be returned.

    average : string, [None, 'micro', 'macro', 'samples', 'weighted' (default)]
        If ``None``, the scores for each class are returned. Otherwise,
        unless ``pos_label`` is given in binary classification, this
        determines the type of averaging performed on the data:

        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average, weighted
            by support (the number of true instances for each label). This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall.
        ``'samples'``:
            Calculate metrics for each instance, and find their average (only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`).

    Returns
    -------
    precision : float (if average is not None) or array of float, shape =\
        [n_unique_labels]
        Precision of the positive class in binary classification or weighted
        average of the precision of each class for the multiclass task.

    Examples
    --------

    >>> from sklearn.metrics import precision_score
    >>> y_true = [0, 1, 2, 0, 1, 2]
    >>> y_pred = [0, 2, 1, 0, 0, 1]
    >>> precision_score(y_true, y_pred, average='macro')  # doctest: +ELLIPSIS
    0.22...
    >>> precision_score(y_true, y_pred, average='micro')  # doctest: +ELLIPSIS
    0.33...
    >>> precision_score(y_true, y_pred, average='weighted')
    ... # doctest: +ELLIPSIS
    0.22...
    >>> precision_score(y_true, y_pred, average=None)  # doctest: +ELLIPSIS
    array([ 0.66...,  0.        ,  0.        ])

    """
    p, _, _, _ = precision_recall_fscore_support(y_true, y_pred,
                                                 labels=labels,
                                                 pos_label=pos_label,
                                                 average=average)
    return p


def recall_score(y_true, y_pred, labels=None, pos_label=1, average='weighted'):
    """Compute the recall

    The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of
    true positives and ``fn`` the number of false negatives. The recall is
    intuitively the ability of the classifier to find all the positive samples.

    The best value is 1 and the worst value is 0.

    Parameters
    ----------
    y_true : array-like or list of labels or label indicator matrix
        Ground truth (correct) target values.

    y_pred : array-like or list of labels or label indicator matrix
        Estimated targets as returned by a classifier.

    labels : array
        Integer array of labels.

    pos_label : str or int, 1 by default
        If ``average`` is not ``None`` and the classification target is binary,
        only this class's scores will be returned.

    average : string, [None, 'micro', 'macro', 'samples', 'weighted' (default)]
        If ``None``, the scores for each class are returned. Otherwise,
        unless ``pos_label`` is given in binary classification, this
        determines the type of averaging performed on the data:

        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average, weighted
            by support (the number of true instances for each label). This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall.
        ``'samples'``:
            Calculate metrics for each instance, and find their average (only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`).

    Returns
    -------
    recall : float (if average is not None) or array of float, shape =\
        [n_unique_labels]
        Recall of the positive class in binary classification or weighted
        average of the recall of each class for the multiclass task.

    Examples
    --------
    >>> from sklearn.metrics import recall_score
    >>> y_true = [0, 1, 2, 0, 1, 2]
    >>> y_pred = [0, 2, 1, 0, 0, 1]
    >>> recall_score(y_true, y_pred, average='macro')  # doctest: +ELLIPSIS
    0.33...
    >>> recall_score(y_true, y_pred, average='micro')  # doctest: +ELLIPSIS
    0.33...
    >>> recall_score(y_true, y_pred, average='weighted')  # doctest: +ELLIPSIS
    0.33...
    >>> recall_score(y_true, y_pred, average=None)
    array([ 1.,  0.,  0.])


    """
    _, r, _, _ = precision_recall_fscore_support(y_true, y_pred,
                                                 labels=labels,
                                                 pos_label=pos_label,
                                                 average=average)
    return r


@deprecated("Function zero_one_score has been renamed to "
            'accuracy_score'" and will be removed in release 0.15.")
def zero_one_score(y_true, y_pred):
    """Zero-one classification score (accuracy)

    Parameters
    ----------
    y_true : array-like, shape = n_samples
        Ground truth (correct) labels.

    y_pred : array-like, shape = n_samples
        Predicted labels, as returned by a classifier.

    Returns
    -------
    score : float
        Fraction of correct predictions in ``y_pred``. The best performance is
        1.

    """
    return accuracy_score(y_true, y_pred)


###############################################################################
# Multiclass utility function
###############################################################################
def classification_report(y_true, y_pred, labels=None, target_names=None):
    """Build a text report showing the main classification metrics

    Parameters
    ----------
    y_true : array-like or list of labels or label indicator matrix
        Ground truth (correct) target values.

    y_pred : array-like or list of labels or label indicator matrix
        Estimated targets as returned by a classifier.

    labels : array, shape = [n_labels]
        Optional list of label indices to include in the report.

    target_names : list of strings
        Optional display names matching the labels (same order).

    Returns
    -------
    report : string
        Text summary of the precision, recall, F1 score for each class.

    Examples
    --------
    >>> from sklearn.metrics import classification_report
    >>> y_true = [0, 1, 2, 2, 0]
    >>> y_pred = [0, 0, 2, 2, 0]
    >>> target_names = ['class 0', 'class 1', 'class 2']
    >>> print(classification_report(y_true, y_pred, target_names=target_names))
                 precision    recall  f1-score   support
    <BLANKLINE>
        class 0       0.67      1.00      0.80         2
        class 1       0.00      0.00      0.00         1
        class 2       1.00      1.00      1.00         2
    <BLANKLINE>
    avg / total       0.67      0.80      0.72         5
    <BLANKLINE>

    """

    if labels is None:
        labels = unique_labels(y_true, y_pred)
    else:
        labels = np.asarray(labels)

    last_line_heading = 'avg / total'

    if target_names is None:
        width = len(last_line_heading)
        target_names = ['{0}'.format(l) for l in labels]
    else:
        width = max(len(cn) for cn in target_names)
        width = max(width, len(last_line_heading))

    headers = ["precision", "recall", "f1-score", "support"]
    fmt = '%% %ds' % width  # first column: class name
    fmt += '  '
    fmt += ' '.join(['% 9s' for _ in headers])
    fmt += '\n'

    headers = [""] + headers
    report = fmt % tuple(headers)
    report += '\n'

    p, r, f1, s = precision_recall_fscore_support(y_true, y_pred,
                                                  labels=labels,
                                                  average=None)

    for i, label in enumerate(labels):
        values = [target_names[i]]
        for v in (p[i], r[i], f1[i]):
            values += ["{0:0.2f}".format(v)]
        values += ["{0}".format(s[i])]
        report += fmt % tuple(values)

    report += '\n'

    # compute averages
    values = [last_line_heading]
    for v in (np.average(p, weights=s),
              np.average(r, weights=s),
              np.average(f1, weights=s)):
        values += ["{0:0.2f}".format(v)]
    values += ['{0}'.format(np.sum(s))]
    report += fmt % tuple(values)
    return report


###############################################################################
# Multilabel loss function
###############################################################################
def hamming_loss(y_true, y_pred, classes=None):
    """Compute the average Hamming loss.

    The Hamming loss is the fraction of labels that are incorrectly predicted.

    Parameters
    ----------
    y_true : array-like or list of labels or label indicator matrix
        Ground truth (correct) labels.

    y_pred : array-like or list of labels or label indicator matrix
        Predicted labels, as returned by a classifier.

    classes : array, shape = [n_labels], optional
        Integer array of labels.

    Returns
    -------
    loss : float or int,
        Return the average Hamming loss between element of ``y_true`` and
        ``y_pred``.

    See Also
    --------
    accuracy_score, jaccard_similarity_score, zero_one_loss

    Notes
    -----
    In multiclass classification, the Hamming loss correspond to the Hamming
    distance between ``y_true`` and ``y_pred`` which is equivalent to the
    subset ``zero_one_loss`` function.

    In multilabel classification, the Hamming loss is different from the
    subset zero-one loss. The zero-one loss considers the entire set of labels
    for a given sample incorrect if it does entirely match the true set of
    labels. Hamming loss is more forgiving in that it penalizes the individual
    labels.

    The Hamming loss is upperbounded by the subset zero-one loss. When
    normalized over samples, the Hamming loss is always between 0 and 1.

    References
    ----------
    .. [1] Grigorios Tsoumakas, Ioannis Katakis. Multi-Label Classification:
           An Overview. International Journal of Data Warehousing & Mining,
           3(3), 1-13, July-September 2007.

    .. [2] `Wikipedia entry on the Hamming distance
           <http://en.wikipedia.org/wiki/Hamming_distance>`_

    Examples
    --------
    >>> from sklearn.metrics import hamming_loss
    >>> y_pred = [1, 2, 3, 4]
    >>> y_true = [2, 2, 3, 4]
    >>> hamming_loss(y_true, y_pred)
    0.25

    In the multilabel case with binary indicator format:

    >>> hamming_loss(np.array([[0.0, 1.0], [1.0, 1.0]]), np.zeros((2, 2)))
    0.75

    and with a list of labels format:

    >>> hamming_loss([(1, 2), (3, )], [(1, 2), tuple()])  # doctest: +ELLIPSIS
    0.166...

    """
    y_type, y_true, y_pred = _check_clf_targets(y_true, y_pred)

    if classes is None:
        classes = unique_labels(y_true, y_pred)
    else:
        classes = np.asarray(classes)

    if y_type == 'multilabel-indicator':
        return np.mean(y_true != y_pred)
    elif y_type == 'multilabel-sequences':
        loss = np.array([len(set(pred).symmetric_difference(true))
                         for pred, true in zip(y_pred, y_true)])

        return np.mean(loss) / np.size(classes)

    elif y_type in ["binary", "multiclass"]:
        return sp_hamming(y_true, y_pred)
    else:
        raise ValueError("{0} is not supported".format(y_type))


###############################################################################
# Regression loss functions
###############################################################################
def mean_absolute_error(y_true, y_pred):
    """Mean absolute error regression loss

    Parameters
    ----------
    y_true : array-like of shape = [n_samples] or [n_samples, n_outputs]
        Ground truth (correct) target values.

    y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs]
        Estimated target values.

    Returns
    -------
    loss : float
        A positive floating point value (the best value is 0.0).

    Examples
    --------
    >>> from sklearn.metrics import mean_absolute_error
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> mean_absolute_error(y_true, y_pred)
    0.5
    >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
    >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
    >>> mean_absolute_error(y_true, y_pred)
    0.75

    """
    y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred)
    return np.mean(np.abs(y_pred - y_true))


def mean_squared_error(y_true, y_pred):
    """Mean squared error regression loss

    Parameters
    ----------
    y_true : array-like of shape = [n_samples] or [n_samples, n_outputs]
        Ground truth (correct) target values.

    y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs]
        Estimated target values.

    Returns
    -------
    loss : float
        A positive floating point value (the best value is 0.0).

    Examples
    --------
    >>> from sklearn.metrics import mean_squared_error
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> mean_squared_error(y_true, y_pred)
    0.375
    >>> y_true = [[0.5, 1],[-1, 1],[7, -6]]
    >>> y_pred = [[0, 2],[-1, 2],[8, -5]]
    >>> mean_squared_error(y_true, y_pred)  # doctest: +ELLIPSIS
    0.708...

    """
    y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred)
    return np.mean((y_pred - y_true) ** 2)


###############################################################################
# Regression score functions
###############################################################################
def explained_variance_score(y_true, y_pred):
    """Explained variance regression score function

    Best possible score is 1.0, lower values are worse.

    Parameters
    ----------
    y_true : array-like
        Ground truth (correct) target values.

    y_pred : array-like
        Estimated target values.

    Returns
    -------
    score : float
        The explained variance.

    Notes
    -----
    This is not a symmetric function.

    Examples
    --------
    >>> from sklearn.metrics import explained_variance_score
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> explained_variance_score(y_true, y_pred)  # doctest: +ELLIPSIS
    0.957...

    """
    y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred)

    if y_type != "continuous":
        raise ValueError("{0} is not supported".format(y_type))

    numerator = np.var(y_true - y_pred)
    denominator = np.var(y_true)
    if denominator == 0.0:
        if numerator == 0.0:
            return 1.0
        else:
            # arbitrary set to zero to avoid -inf scores, having a constant
            # y_true is not interesting for scoring a regression anyway
            return 0.0
    return 1 - numerator / denominator


def r2_score(y_true, y_pred):
    """R² (coefficient of determination) regression score function.

    Best possible score is 1.0, lower values are worse.

    Parameters
    ----------
    y_true : array-like of shape = [n_samples] or [n_samples, n_outputs]
        Ground truth (correct) target values.

    y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs]
        Estimated target values.

    Returns
    -------
    z : float
        The R² score.

    Notes
    -----
    This is not a symmetric function.

    Unlike most other scores, R² score may be negative (it need not actually
    be the square of a quantity R).

    References
    ----------
    .. [1] `Wikipedia entry on the Coefficient of determination
            <http://en.wikipedia.org/wiki/Coefficient_of_determination>`_

    Examples
    --------
    >>> from sklearn.metrics import r2_score
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> r2_score(y_true, y_pred)  # doctest: +ELLIPSIS
    0.948...
    >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
    >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
    >>> r2_score(y_true, y_pred)  # doctest: +ELLIPSIS
    0.938...

    """
    y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred)

    if len(y_true) == 1:
        raise ValueError("r2_score can only be computed given more than one"
                         " sample.")
    numerator = ((y_true - y_pred) ** 2).sum(dtype=np.float64)
    denominator = ((y_true - y_true.mean(axis=0)) ** 2).sum(dtype=np.float64)

    if denominator == 0.0:
        if numerator == 0.0:
            return 1.0
        else:
            # arbitrary set to zero to avoid -inf scores, having a constant
            # y_true is not interesting for scoring a regression anyway
            return 0.0

    return 1 - numerator / denominator


def log_loss(y_true, y_pred, eps=1e-15, normalize=True):
    """Log loss, aka logistic loss or cross-entropy loss.

    This is the loss function used in (multinomial) logistic regression
    and extensions of it such as neural networks, defined as the negative
    log-likelihood of the true labels given a probabilistic classifier's
    predictions. For a single sample with true label yt in {0,1} and
    estimated probability yp that yt = 1, the log loss is

        -log P(yt|yp) = -(yt log(yp) + (1 - yt) log(1 - yp))

    Parameters
    ----------
    y_true : array-like or list of labels or label indicator matrix
        Ground truth (correct) labels for n_samples samples.

    y_pred : array-like of float, shape = (n_samples, n_classes)
        Predicted probabilities, as returned by a classifier's
        predict_proba method.

    eps : float
        Log loss is undefined for p=0 or p=1, so probabilities are
        clipped to max(eps, min(1 - eps, p)).

    normalize : bool, optional (default=True)
        If true, return the mean loss per sample.
        Otherwise, return the total loss.

    Returns
    -------
    loss : float

    Examples
    --------
    >>> log_loss(["spam", "ham", "ham", "spam"],  # doctest: +ELLIPSIS
    ...          [[.1, .9], [.9, .1], [.8, .2], [.35, .65]])
    0.21616...

    References
    ----------
    C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer,
    p. 209.

    Notes
    -----
    The logarithm used is the natural logarithm (base-e).
    """
    lb = LabelBinarizer()
    T = lb.fit_transform(y_true)
    if T.shape[1] == 1:
        T = np.append(1 - T, T, axis=1)

    # Clip and renormalize
    Y = np.clip(y_pred, eps, 1 - eps)
    Y /= Y.sum(axis=1)[:, np.newaxis]

    loss = -(T * np.log(Y)).sum()
    return loss / T.shape[0] if normalize else loss