This file is indexed.

/usr/share/pyshared/sklearn/manifold/mds.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
"""
Multi-dimensional Scaling (MDS)
"""

# author: Nelle Varoquaux <nelle.varoquaux@gmail.com>
# Licence: BSD

import numpy as np

import warnings

from ..base import BaseEstimator
from ..metrics import euclidean_distances
from ..utils import check_random_state, check_arrays
from ..externals.joblib import Parallel
from ..externals.joblib import delayed
from ..isotonic import IsotonicRegression


def _smacof_single(similarities, metric=True, n_components=2, init=None,
                   max_iter=300, verbose=0, eps=1e-3, random_state=None):
    """
    Computes multidimensional scaling using SMACOF algorithm

    Parameters
    ----------
    similarities: symmetric ndarray, shape [n * n]
        similarities between the points

    metric: boolean, optional, default: True
        compute metric or nonmetric SMACOF algorithm

    n_components: int, optional, default: 2
        number of dimension in which to immerse the similarities
        overwritten if initial array is provided.

    init: {None or ndarray}, optional
        if None, randomly chooses the initial configuration
        if ndarray, initialize the SMACOF algorithm with this array

    max_iter: int, optional, default: 300
        Maximum number of iterations of the SMACOF algorithm for a single run

    verbose: int, optional, default: 0
        level of verbosity

    eps: float, optional, default: 1e-6
        relative tolerance w.r.t stress to declare converge

    random_state: integer or numpy.RandomState, optional
        The generator used to initialize the centers. If an integer is
        given, it fixes the seed. Defaults to the global numpy random
        number generator.

    Returns
    -------
    X: ndarray (n_samples, n_components), float
               coordinates of the n_samples points in a n_components-space

    stress_: float
        The final value of the stress (sum of squared distance of the
        disparities and the distances for all constrained points)

    """
    n_samples = similarities.shape[0]
    random_state = check_random_state(random_state)

    if similarities.shape[0] != similarities.shape[1]:
        raise ValueError("similarities must be a square array (shape=%d)" %
                         n_samples)
    res = 100 * np.finfo(np.float).resolution
    if np.any((similarities - similarities.T) > res):
        raise ValueError("similarities must be symmetric")

    sim_flat = ((1 - np.tri(n_samples)) * similarities).ravel()
    sim_flat_w = sim_flat[sim_flat != 0]
    if init is None:
        # Randomly choose initial configuration
        X = random_state.rand(n_samples * n_components)
        X = X.reshape((n_samples, n_components))
    else:
        # overrides the parameter p
        n_components = init.shape[1]
        if n_samples != init.shape[0]:
            raise ValueError("init matrix should be of shape (%d, %d)" %
                             (n_samples, n_components))
        X = init

    old_stress = None
    ir = IsotonicRegression()
    for it in range(max_iter):
        # Compute distance and monotonic regression
        dis = euclidean_distances(X)

        if metric:
            disparities = similarities
        else:
            dis_flat = dis.ravel()
            # similarities with 0 are considered as missing values
            dis_flat_w = dis_flat[sim_flat != 0]

            # Compute the disparities using a monotonic regression
            disparities_flat = ir.fit_transform(sim_flat_w, dis_flat_w)
            disparities = dis_flat.copy()
            disparities[sim_flat != 0] = disparities_flat
            disparities = disparities.reshape((n_samples, n_samples))
            disparities *= np.sqrt((n_samples * (n_samples - 1) / 2) /
                                   (disparities ** 2).sum())

        # Compute stress
        stress = ((dis.ravel() - disparities.ravel()) ** 2).sum() / 2

        # Update X using the Guttman transform
        dis[dis == 0] = 1e-5
        ratio = disparities / dis
        B = - ratio
        B[np.arange(len(B)), np.arange(len(B))] += ratio.sum(axis=1)
        X = 1. / n_samples * np.dot(B, X)

        dis = np.sqrt((X ** 2).sum(axis=1)).sum()
        if verbose == 2:
            print('it: %d, stress %s' % (it, stress))
        if old_stress is not None:
            if(old_stress - stress / dis) < eps:
                if verbose:
                    print('breaking at iteration %d with stress %s' % (it,
                                                                       stress))
                break
        old_stress = stress / dis

    return X, stress


def smacof(similarities, metric=True, n_components=2, init=None, n_init=8,
           n_jobs=1, max_iter=300, verbose=0, eps=1e-3, random_state=None):
    """
    Computes multidimensional scaling using SMACOF (Scaling by Majorizing a
    Complicated Function) algorithm

    The SMACOF algorithm is a multidimensional scaling algorithm: it minimizes
    a objective function, the *stress*, using a majorization technique. The
    Stress Majorization, also known as the Guttman Transform, guarantees a
    monotone convergence of Stress, and is more powerful than traditional
    techniques such as gradient descent.

    The SMACOF algorithm for metric MDS can summarized by the following steps:

    1. Set an initial start configuration, randomly or not.
    2. Compute the stress
    3. Compute the Guttman Transform
    4. Iterate 2 and 3 until convergence.

    The nonmetric algorithm adds a monotonic regression steps before computing
    the stress.

    Parameters
    ----------
    similarities : symmetric ndarray, shape (n_samples, n_samples)
        similarities between the points

    metric : boolean, optional, default: True
        compute metric or nonmetric SMACOF algorithm

    n_components : int, optional, default: 2
        number of dimension in which to immerse the similarities
        overridden if initial array is provided.

    init : {None or ndarray of shape (n_samples, n_components)}, optional
        if None, randomly chooses the initial configuration
        if ndarray, initialize the SMACOF algorithm with this array

    n_init : int, optional, default: 8
        Number of time the smacof algorithm will be run with different
        initialisation. The final results will be the best output of the
        n_init consecutive runs in terms of stress.

    n_jobs : int, optional, default: 1

        The number of jobs to use for the computation. This works by breaking
        down the pairwise matrix into n_jobs even slices and computing them in
        parallel.

        If -1 all CPUs are used. If 1 is given, no parallel computing code is
        used at all, which is useful for debugging. For n_jobs below -1,
        (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
        are used.

    max_iter : int, optional, default: 300
        Maximum number of iterations of the SMACOF algorithm for a single run

    verbose : int, optional, default: 0
        level of verbosity

    eps : float, optional, default: 1e-6
        relative tolerance w.r.t stress to declare converge

    random_state : integer or numpy.RandomState, optional
        The generator used to initialize the centers. If an integer is
        given, it fixes the seed. Defaults to the global numpy random
        number generator.

    Returns
    -------
    X : ndarray (n_samples,n_components)
        Coordinates of the n_samples points in a n_components-space

    stress : float
        The final value of the stress (sum of squared distance of the
        disparities and the distances for all constrained points)

    Notes
    -----
    "Modern Multidimensional Scaling - Theory and Applications" Borg, I.;
    Groenen P. Springer Series in Statistics (1997)

    "Nonmetric multidimensional scaling: a numerical method" Kruskal, J.
    Psychometrika, 29 (1964)

    "Multidimensional scaling by optimizing goodness of fit to a nonmetric
    hypothesis" Kruskal, J. Psychometrika, 29, (1964)
    """

    similarities, = check_arrays(similarities, sparse_format='dense')
    random_state = check_random_state(random_state)

    if hasattr(init, '__array__'):
        init = np.asarray(init).copy()
        if not n_init == 1:
            warnings.warn(
                'Explicit initial positions passed: '
                'performing only one init of the MDS instead of %d'
                % n_init)
            n_init = 1

    best_pos, best_stress = None, None

    if n_jobs == 1:
        for it in range(n_init):
            pos, stress = _smacof_single(similarities, metric=metric,
                                         n_components=n_components, init=init,
                                         max_iter=max_iter, verbose=verbose,
                                         eps=eps, random_state=random_state)
            if best_stress is None or stress < best_stress:
                best_stress = stress
                best_pos = pos.copy()
    else:
        seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)
        results = Parallel(n_jobs=n_jobs, verbose=max(verbose - 1, 0))(
            delayed(_smacof_single)(
                similarities, metric=metric, n_components=n_components,
                init=init, max_iter=max_iter, verbose=verbose, eps=eps,
                random_state=seed)
            for seed in seeds)
        positions, stress = zip(*results)
        best = np.argmin(stress)
        best_stress = stress[best]
        best_pos = positions[best]
    return best_pos, best_stress


class MDS(BaseEstimator):
    """Multidimensional scaling

    Parameters
    ----------
    metric : boolean, optional, default: True
        compute metric or nonmetric SMACOF (Scaling by Majorizing a
        Complicated Function) algorithm

    n_components : int, optional, default: 2
        number of dimension in which to immerse the similarities
        overridden if initial array is provided.

    n_init : int, optional, default: 4
        Number of time the smacof algorithm will be run with different
        initialisation. The final results will be the best output of the
        n_init consecutive runs in terms of stress.

    max_iter : int, optional, default: 300
        Maximum number of iterations of the SMACOF algorithm for a single run

    verbose : int, optional, default: 0
        level of verbosity

    eps : float, optional, default: 1e-6
        relative tolerance w.r.t stress to declare converge

    n_jobs : int, optional, default: 1
        The number of jobs to use for the computation. This works by breaking
        down the pairwise matrix into n_jobs even slices and computing them in
        parallel.

        If -1 all CPUs are used. If 1 is given, no parallel computing code is
        used at all, which is useful for debugging. For n_jobs below -1,
        (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
        are used.

    random_state : integer or numpy.RandomState, optional
        The generator used to initialize the centers. If an integer is
        given, it fixes the seed. Defaults to the global numpy random
        number generator.

    dissimilarity : string
        Which dissimilarity measure to use.
        Supported are 'euclidean' and 'precomputed'.


    Attributes
    ----------
    ``embedding_`` : array-like, shape [n_components, n_samples]
        Stores the position of the dataset in the embedding space

    ``stress_`` : float
        The final value of the stress (sum of squared distance of the
        disparities and the distances for all constrained points)


    References
    ----------
    "Modern Multidimensional Scaling - Theory and Applications" Borg, I.;
    Groenen P. Springer Series in Statistics (1997)

    "Nonmetric multidimensional scaling: a numerical method" Kruskal, J.
    Psychometrika, 29 (1964)

    "Multidimensional scaling by optimizing goodness of fit to a nonmetric
    hypothesis" Kruskal, J. Psychometrika, 29, (1964)

    """
    def __init__(self, n_components=2, metric=True, n_init=4,
                 max_iter=300, verbose=0, eps=1e-3, n_jobs=1,
                 random_state=None, dissimilarity="euclidean"):
        self.n_components = n_components
        self.dissimilarity = dissimilarity
        self.metric = metric
        self.n_init = n_init
        self.max_iter = max_iter
        self.eps = eps
        self.verbose = verbose
        self.n_jobs = n_jobs
        self.random_state = random_state

    @property
    def _pairwise(self):
        return self.kernel == "precomputed"

    def fit(self, X, init=None, y=None):
        """
        Computes the position of the points in the embedding space

        Parameters
        ----------
        X : array, shape=[n_samples, n_features]
            Input data.

        init : {None or ndarray, shape (n_samples,)}, optional
            If None, randomly chooses the initial configuration
            if ndarray, initialize the SMACOF algorithm with this array.
        """
        self.fit_transform(X, init=init)
        return self

    def fit_transform(self, X, init=None, y=None):
        """
        Fit the data from X, and returns the embedded coordinates

        Parameters
        ----------
        X : array, shape=[n_samples, n_features]
            Input data.

        init : {None or ndarray, shape (n_samples,)}, optional
            If None, randomly chooses the initial configuration
            if ndarray, initialize the SMACOF algorithm with this array.

        """
        if X.shape[0] == X.shape[1] and self.dissimilarity != "precomputed":
            warnings.warn("The MDS API has changed. ``fit`` now constructs an"
                          "dissimilarity matrix from data. To use a custom "
                          "dissimilarity matrix, set "
                          "``dissimilarity=precomputed``.")

        if self.dissimilarity is "precomputed":
            self.dissimilarity_matrix_ = X
        elif self.dissimilarity is "euclidean":
            self.dissimilarity_matrix_ = euclidean_distances(X)
        else:
            raise ValueError("Proximity must be 'precomputed' or 'euclidean'."
                             " Got %s instead" % str(self.dissimilarity))

        self.embedding_, self.stress_ = smacof(
            self.dissimilarity_matrix_, metric=self.metric,
            n_components=self.n_components, init=init, n_init=self.n_init,
            n_jobs=self.n_jobs, max_iter=self.max_iter, verbose=self.verbose,
            eps=self.eps, random_state=self.random_state)

        return self.embedding_