This file is indexed.

/usr/share/pyshared/sklearn/kernel_approximation.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# -*- coding: utf-8 -*-
"""
The :mod:`sklearn.kernel_approximation` module implements several
approximate kernel feature maps base on Fourier transforms.
"""

# Author: Andreas Mueller <amueller@ais.uni-bonn.de>
#
# License: BSD 3 clause

import warnings

import numpy as np
import scipy.sparse as sp
from scipy.linalg import svd

from .base import BaseEstimator
from .base import TransformerMixin
from .utils import (array2d, atleast2d_or_csr, check_random_state,
                    as_float_array)
from .utils.extmath import safe_sparse_dot
from .metrics.pairwise import pairwise_kernels


class RBFSampler(BaseEstimator, TransformerMixin):
    """Approximates feature map of an RBF kernel by Monte Carlo approximation
    of its Fourier transform.

    Parameters
    ----------
    gamma : float
        Parameter of RBF kernel: exp(-γ × x²)

    n_components : int
        Number of Monte Carlo samples per original feature.
        Equals the dimensionality of the computed feature space.

    random_state : {int, RandomState}, optional
        If int, random_state is the seed used by the random number generator;
        if RandomState instance, random_state is the random number generator.

    Notes
    -----
    See "Random Features for Large-Scale Kernel Machines" by A. Rahimi and
    Benjamin Recht.
    """

    def __init__(self, gamma=1., n_components=100, random_state=None):
        self.gamma = gamma
        self.n_components = n_components
        self.random_state = random_state

    def fit(self, X, y=None):
        """Fit the model with X.

        Samples random projection according to n_features.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Training data, where n_samples in the number of samples
            and n_features is the number of features.

        Returns
        -------
        self : object
            Returns the transformer.
        """

        X = atleast2d_or_csr(X)
        random_state = check_random_state(self.random_state)
        n_features = X.shape[1]

        self.random_weights_ = (np.sqrt(self.gamma) * random_state.normal(
            size=(n_features, self.n_components)))

        self.random_offset_ = random_state.uniform(0, 2 * np.pi,
                                                   size=self.n_components)
        return self

    def transform(self, X, y=None):
        """Apply the approximate feature map to X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            New data, where n_samples in the number of samples
            and n_features is the number of features.

        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)
        """
        X = atleast2d_or_csr(X)
        projection = safe_sparse_dot(X, self.random_weights_)
        projection += self.random_offset_
        np.cos(projection, projection)
        projection *= np.sqrt(2.) / np.sqrt(self.n_components)
        return projection


class SkewedChi2Sampler(BaseEstimator, TransformerMixin):
    """Approximates feature map of the "skewed chi-squared" kernel by Monte
    Carlo approximation of its Fourier transform.

    Parameters
    ----------
    skewedness : float
        "skewedness" parameter of the kernel. Needs to be cross-validated.

    n_components : int
        number of Monte Carlo samples per original feature.
        Equals the dimensionality of the computed feature space.

    random_state : {int, RandomState}, optional
        If int, random_state is the seed used by the random number generator;
        if RandomState instance, random_state is the random number generator.

    References
    ----------
    See "Random Fourier Approximations for Skewed Multiplicative Histogram
    Kernels" by Fuxin Li, Catalin Ionescu and Cristian Sminchisescu.

    See also
    --------
    AdditiveChi2Sampler : A different approach for approximating an additive
        variant of the chi squared kernel.

    sklearn.metrics.chi2_kernel : The exact chi squared kernel.
    """

    def __init__(self, skewedness=1., n_components=100, random_state=None):
        self.skewedness = skewedness
        self.n_components = n_components
        self.random_state = random_state

    def fit(self, X, y=None):
        """Fit the model with X.

        Samples random projection according to n_features.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data, where n_samples in the number of samples
            and n_features is the number of features.

        Returns
        -------
        self : object
            Returns the transformer.
        """

        X = array2d(X)
        random_state = check_random_state(self.random_state)
        n_features = X.shape[1]
        uniform = random_state.uniform(size=(n_features, self.n_components))
        # transform by inverse CDF of sech
        self.random_weights_ = (1. / np.pi
                                * np.log(np.tan(np.pi / 2. * uniform)))
        self.random_offset_ = random_state.uniform(0, 2 * np.pi,
                                                   size=self.n_components)
        return self

    def transform(self, X, y=None):
        """Apply the approximate feature map to X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            New data, where n_samples in the number of samples
            and n_features is the number of features.

        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)
        """
        X = as_float_array(X, copy=True)
        X = array2d(X, copy=False)
        if (X < 0).any():
            raise ValueError("X may not contain entries smaller than zero.")

        X += self.skewedness
        np.log(X, X)
        projection = safe_sparse_dot(X, self.random_weights_)
        projection += self.random_offset_
        np.cos(projection, projection)
        projection *= np.sqrt(2.) / np.sqrt(self.n_components)
        return projection


class AdditiveChi2Sampler(BaseEstimator, TransformerMixin):
    """Approximate feature map for additive chi² kernel.

    Uses sampling the fourier transform of the kernel characteristic
    at regular intervals.

    Since the kernel that is to be approximated is additive, the components of
    the input vectors can be treated separately.  Each entry in the original
    space is transformed into 2×sample_steps+1 features, where sample_steps is
    a parameter of the method. Typical values of sample_steps include 1, 2 and
    3.

    Optimal choices for the sampling interval for certain data ranges can be
    computed (see the reference). The default values should be reasonable.

    Parameters
    ----------
    sample_steps : int, optional
        Gives the number of (complex) sampling points.
    sample_interval : float, optional
        Sampling interval. Must be specified when sample_steps not in {1,2,3}.

    Notes
    -----
    This estimator approximates a slightly different version of the additive
    chi squared kernel then ``metric.additive_chi2`` computes.

    See also
    --------
    SkewedChi2Sampler : A Fourier-approximation to a non-additive variant of
        the chi squared kernel.

    sklearn.metrics.chi2_kernel : The exact chi squared kernel.

    sklearn.metrics.additive_chi2_kernel : The exact additive chi squared
        kernel.

    References
    ----------
    See `"Efficient additive kernels via explicit feature maps"
    <http://eprints.pascal-network.org/archive/00006964/01/vedaldi10.pdf>`_
    Vedaldi, A. and Zisserman, A., Computer Vision and Pattern Recognition 2010

    """

    def __init__(self, sample_steps=2, sample_interval=None):
        self.sample_steps = sample_steps
        self.sample_interval = sample_interval

    def fit(self, X, y=None):
        """Set parameters."""
        X = atleast2d_or_csr(X)
        if self.sample_interval is None:
            # See reference, figure 2 c)
            if self.sample_steps == 1:
                self.sample_interval_ = 0.8
            elif self.sample_steps == 2:
                self.sample_interval_ = 0.5
            elif self.sample_steps == 3:
                self.sample_interval_ = 0.4
            else:
                raise ValueError("If sample_steps is not in [1, 2, 3],"
                                 " you need to provide sample_interval")
        else:
            self.sample_interval_ = self.interval
        return self

    def transform(self, X, y=None):
        """Apply approximate feature map to X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = (n_samples, n_features)

        Returns
        -------
        X_new : {array, sparse matrix}, \
               shape = (n_samples, n_features × (2×sample_steps + 1))
            Whether the return value is an array of sparse matrix depends on
            the type of the input X.
        """

        X = atleast2d_or_csr(X)
        sparse = sp.issparse(X)

        # check if X has negative values. Doesn't play well with np.log.
        if ((X.data if sparse else X) < 0).any():
            raise ValueError("Entries of X must be non-negative.")
        # zeroth component
        # 1/cosh = sech
        # cosh(0) = 1.0

        transf = self._transform_sparse if sparse else self._transform_dense
        return transf(X)

    def _transform_dense(self, X):
        non_zero = (X != 0.0)
        X_nz = X[non_zero]

        X_step = np.zeros_like(X)
        X_step[non_zero] = np.sqrt(X_nz * self.sample_interval_)

        X_new = [X_step]

        log_step_nz = self.sample_interval_ * np.log(X_nz)
        step_nz = 2 * X_nz * self.sample_interval_

        for j in range(1, self.sample_steps):
            factor_nz = np.sqrt(step_nz /
                                np.cosh(np.pi * j * self.sample_interval_))

            X_step = np.zeros_like(X)
            X_step[non_zero] = factor_nz * np.cos(j * log_step_nz)
            X_new.append(X_step)

            X_step = np.zeros_like(X)
            X_step[non_zero] = factor_nz * np.sin(j * log_step_nz)
            X_new.append(X_step)

        return np.hstack(X_new)

    def _transform_sparse(self, X):
        indices = X.indices.copy()
        indptr = X.indptr.copy()

        data_step = np.sqrt(X.data * self.sample_interval_)
        X_step = sp.csr_matrix((data_step, indices, indptr),
                               shape=X.shape, dtype=X.dtype, copy=False)
        X_new = [X_step]

        log_step_nz = self.sample_interval_ * np.log(X.data)
        step_nz = 2 * X.data * self.sample_interval_

        for j in range(1, self.sample_steps):
            factor_nz = np.sqrt(step_nz /
                                np.cosh(np.pi * j * self.sample_interval_))

            data_step = factor_nz * np.cos(j * log_step_nz)
            X_step = sp.csr_matrix((data_step, indices, indptr),
                                   shape=X.shape, dtype=X.dtype, copy=False)
            X_new.append(X_step)

            data_step = factor_nz * np.sin(j * log_step_nz)
            X_step = sp.csr_matrix((data_step, indices, indptr),
                                   shape=X.shape, dtype=X.dtype, copy=False)
            X_new.append(X_step)

        return sp.hstack(X_new)


class Nystroem(BaseEstimator, TransformerMixin):
    """Approximate a kernel map using a subset of the training data.

    Constructs an approximate feature map for an arbitrary kernel
    using a subset of the data as basis.

    Parameters
    ----------
    kernel : string or callable, default="rbf"
        Kernel map to be approximated. A callable should accept two arguments
        and the keyword arguments passed to this object as kernel_params, and
        should return a floating point number.

    n_components : int
        Number of features to construct.
        How many data points will be used to construct the mapping.

    gamma : float, default=None
        Gamma parameter for the RBF, polynomial, exponential chi² and
        sigmoid kernels. Interpretation of the default value is left to
        the kernel; see the documentation for sklearn.metrics.pairwise.
        Ignored by other kernels.

    degree : float, default=3
        Degree of the polynomial kernel. Ignored by other kernels.

    coef0 : float, default=1
        Zero coefficient for polynomial and sigmoid kernels.
        Ignored by other kernels.

    kernel_params : mapping of string to any, optional
        Additional parameters (keyword arguments) for kernel function passed
        as callable object.

    random_state : {int, RandomState}, optional
        If int, random_state is the seed used by the random number generator;
        if RandomState instance, random_state is the random number generator.


    Attributes
    ----------
    `components_` : array, shape (n_components, n_features)
        Subset of training points used to construct the feature map.

    `component_indices_` : array, shape (n_components)
        Indices of ``components_`` in the training set.

    `normalization_` : array, shape (n_components, n_components)
        Normalization matrix needed for embedding.
        Square root of the kernel matrix on ``components_``.


    References
    ----------
    * Williams, C.K.I. and Seeger, M.
      "Using the Nystrom method to speed up kernel machines",
      Advances in neural information processing systems 2001

    * T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou
      "Nystroem Method vs Random Fourier Features: A Theoretical and Empirical
      Comparison",
      Advances in Neural Information Processing Systems 2012


    See also
    --------
    RBFSampler : An approximation to the RBF kernel using random Fourier
                 features.

    sklearn.metric.pairwise.kernel_metrics : List of built-in kernels.
    """
    def __init__(self, kernel="rbf", gamma=None, coef0=1, degree=3,
                 kernel_params=None, n_components=100, random_state=None):
        self.kernel = kernel
        self.gamma = gamma
        self.coef0 = coef0
        self.degree = degree
        self.kernel_params = kernel_params
        self.n_components = n_components
        self.random_state = random_state

    def fit(self, X, y=None):
        """Fit estimator to data.

        Samples a subset of training points, computes kernel
        on these and computes normalization matrix.

        Parameters
        ----------
        X : array-like, shape=(n_samples, n_feature)
            Training data.
        """

        rnd = check_random_state(self.random_state)
        n_samples = X.shape[0]

        # get basis vectors
        if self.n_components > n_samples:
            # XXX should we just bail?
            n_components = n_samples
            warnings.warn("n_components > n_samples. This is not possible.\n"
                          "n_components was set to n_samples, which results"
                          " in inefficient evaluation of the full kernel.")

        else:
            n_components = self.n_components
        n_components = min(n_samples, n_components)
        inds = rnd.permutation(n_samples)
        basis_inds = inds[:n_components]
        basis = X[basis_inds]

        if False:
            basis_kernel = self.kernel(basis, basis)
        else:
            basis_kernel = pairwise_kernels(basis, metric=self.kernel,
                                            filter_params=True,
                                            **self._get_kernel_params())

        # sqrt of kernel matrix on basis vectors
        U, S, V = svd(basis_kernel)
        self.normalization_ = np.dot(U * 1. / np.sqrt(S), V)
        self.components_ = basis
        self.component_indices_ = inds
        return self

    def transform(self, X):
        """Apply feature map to X.

        Computes an approximate feature map using the kernel
        between some training points and X.

        Parameters
        ----------
        X : array-like, shape=(n_samples, n_features)
            Data to transform.

        Returns
        -------
        X_transformed : array, shape=(n_samples, n_components)
            Transformed data.
        """

        if False:
            embedded = self.kernel(X, self.components_)
        else:
            embedded = pairwise_kernels(X, self.components_,
                                        metric=self.kernel,
                                        filter_params=True,
                                        **self._get_kernel_params())
        return np.dot(embedded, self.normalization_.T)

    def _get_kernel_params(self):
        params = self.kernel_params
        if params is None:
            params = {}
        if not callable(self.kernel):
            params['gamma'] = self.gamma
            params['degree'] = self.degree
            params['coef0'] = self.coef0

        return params