This file is indexed.

/usr/share/pyshared/sklearn/isotonic.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Authors: Fabian Pedregosa <fabian@fseoane.net>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Nelle Varoquaux <nelle.varoquaux@gmail.com>
# License: BSD 3 clause

import numpy as np
from scipy import interpolate
from .base import BaseEstimator, TransformerMixin, RegressorMixin
from .utils import as_float_array, check_arrays
from ._isotonic import _isotonic_regression
import warnings


def isotonic_regression(y, sample_weight=None, y_min=None, y_max=None,
                        weight=None, increasing=True):
    """Solve the isotonic regression model::

        min sum w[i] (y[i] - y_[i]) ** 2

        subject to y_min = y_[1] <= y_[2] ... <= y_[n] = y_max

    where:
        - y[i] are inputs (real numbers)
        - y_[i] are fitted
        - w[i] are optional strictly positive weights (default to 1.0)

    Parameters
    ----------
    y : iterable of floating-point values
        The data.

    sample_weight : iterable of floating-point values, optional, default: None
        Weights on each point of the regression.
        If None, weight is set to 1 (equal weights).

    y_min : optional, default: None
        If not None, set the lowest value of the fit to y_min.

    y_max : optional, default: None
        If not None, set the highest value of the fit to y_max.

    increasing : boolean, optional, default: True
        Whether to compute ``y_`` is increasing (if set to True) or decreasing
        (if set to False)

    Returns
    -------
    `y_` : list of floating-point values
        Isotonic fit of y.

    References
    ----------
    "Active set algorithms for isotonic regression; A unifying framework"
    by Michael J. Best and Nilotpal Chakravarti, section 3.
    """
    if weight is not None:
        warnings.warn("'weight' was renamed to 'sample_weight' and will "
                      "be removed in 0.16.",
                      DeprecationWarning)
        sample_weight = weight

    y = np.asarray(y, dtype=np.float)
    if sample_weight is None:
        sample_weight = np.ones(len(y), dtype=y.dtype)
    else:
        sample_weight = np.asarray(sample_weight, dtype=np.float)
    if not increasing:
        y = y[::-1]
        sample_weight = sample_weight[::-1]

    if y_min is not None or y_max is not None:
        y = np.copy(y)
        sample_weight = np.copy(sample_weight)
        # upper bound on the cost function
        C = np.dot(sample_weight, y * y) * 10
        if y_min is not None:
            y[0] = y_min
            sample_weight[0] = C
        if y_max is not None:
            y[-1] = y_max
            sample_weight[-1] = C

    solution = np.empty(len(y))
    y_ = _isotonic_regression(y, sample_weight, solution)
    if increasing:
        return y_
    else:
        return y_[::-1]


class IsotonicRegression(BaseEstimator, TransformerMixin, RegressorMixin):
    """Isotonic regression model.

    The isotonic regression optimization problem is defined by::

        min sum w_i (y[i] - y_[i]) ** 2

        subject to y_[i] <= y_[j] whenever X[i] <= X[j]
        and min(y_) = y_min, max(y_) = y_max

    where:
        - ``y[i]`` are inputs (real numbers)
        - ``y_[i]`` are fitted
        - ``X`` specifies the order.
          If ``X`` is non-decreasing then ``y_`` is non-decreasing.
        - ``w[i]`` are optional strictly positive weights (default to 1.0)

    Parameters
    ----------
    y_min : optional, default: None
        If not None, set the lowest value of the fit to y_min.

    y_max : optional, default: None
        If not None, set the highest value of the fit to y_max.

    Attributes
    ----------
    `X_` : ndarray (n_samples, )
        A copy of the input X.

    `y_` : ndarray (n_samples, )
        Isotonic fit of y.

    References
    ----------
    Isotonic Median Regression: A Linear Programming Approach
    Nilotpal Chakravarti
    Mathematics of Operations Research
    Vol. 14, No. 2 (May, 1989), pp. 303-308
    """
    def __init__(self, y_min=None, y_max=None, increasing=True):
        self.y_min = y_min
        self.y_max = y_max
        self.increasing = increasing

    def _check_fit_data(self, X, y, sample_weight=None):
        if len(X.shape) != 1:
            raise ValueError("X should be a vector")

    def fit(self, X, y, sample_weight=None, weight=None):
        """Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like, shape=(n_samples,)
            Training data.

        y : array-like, shape=(n_samples,)
            Training target.

        sample_weight : array-like, shape=(n_samples,), optional, default: None
            Weights. If set to None, all weights will be set to 1 (equal
            weights).

        Returns
        -------
        self : object
            Returns an instance of self.

        Notes
        -----
        X is stored for future use, as `transform` needs X to interpolate
        new input data.
        """
        if weight is not None:
            warnings.warn("'weight' was renamed to 'sample_weight' and will "
                          "be removed in 0.16.",
                          DeprecationWarning)
            sample_weight = weight

        X, y, sample_weight = check_arrays(X, y, sample_weight,
                                           sparse_format='dense')
        y = as_float_array(y)
        self._check_fit_data(X, y, sample_weight)
        order = np.argsort(X)
        self.X_ = as_float_array(X[order], copy=False)
        self.y_ = isotonic_regression(y[order], sample_weight, self.y_min,
                                      self.y_max, increasing=self.increasing)
        return self

    def transform(self, T):
        """Transform new data by linear interpolation

        Parameters
        ----------
        T : array-like, shape=(n_samples,)
            Data to transform.

        Returns
        -------
        `T_` : array, shape=(n_samples,)
            The transformed data
        """
        T = as_float_array(T)
        if len(T.shape) != 1:
            raise ValueError("X should be a vector")

        f = interpolate.interp1d(self.X_, self.y_, kind='linear',
                                 bounds_error=True)
        return f(T)

    def fit_transform(self, X, y, sample_weight=None, weight=None):
        """Fit model and transform y by linear interpolation.

        Parameters
        ----------
        X : array-like, shape=(n_samples,)
            Training data.

        y : array-like, shape=(n_samples,)
            Training target.

        sample_weight : array-like, shape=(n_samples,), optional, default: None
            Weights. If set to None, all weights will be equal to 1 (equal
            weights).

        Returns
        -------
        `y_` : array, shape=(n_samples,)
            The transformed data.

        Notes
        -----
        X doesn't influence the result of `fit_transform`. It is however stored
        for future use, as `transform` needs X to interpolate new input
        data.
        """
        if weight is not None:
            warnings.warn("'weight' was renamed to 'sample_weight' and will "
                          "be removed in 0.16.",
                          DeprecationWarning)
            sample_weight = weight

        X, y, sample_weight = check_arrays(X, y, sample_weight,
                                           sparse_format='dense')
        y = as_float_array(y)
        self._check_fit_data(X, y, sample_weight)
        order = np.lexsort((y, X))
        order_inv = np.argsort(order)
        self.X_ = as_float_array(X[order], copy=False)
        self.y_ = isotonic_regression(y[order], sample_weight, self.y_min,
                                      self.y_max, increasing=self.increasing)
        return self.y_[order_inv]

    def predict(self, T):
        """Predict new data by linear interpolation.

        Parameters
        ----------
        T : array-like, shape=(n_samples,)
            Data to transform.

        Returns
        -------
        `T_` : array, shape=(n_samples,)
            Transformed data.
        """
        return self.transform(T)