This file is indexed.

/usr/share/pyshared/sklearn/grid_search.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
"""
The :mod:`sklearn.grid_search` includes utilities to fine-tune the parameters
of an estimator.
"""
from __future__ import print_function

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>,
#         Gael Varoquaux <gael.varoquaux@normalesup.org>
#         Andreas Mueller <amueller@ais.uni-bonn.de>
#         Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause

from abc import ABCMeta, abstractmethod
from collections import Mapping, namedtuple, Sized
from functools import partial, reduce
from itertools import product
import numbers
import operator
import time
import warnings

import numpy as np

from .base import BaseEstimator, is_classifier, clone
from .base import MetaEstimatorMixin
from .cross_validation import check_cv
from .externals.joblib import Parallel, delayed, logger
from .externals import six
from .utils import safe_mask, check_random_state
from .utils.validation import _num_samples, check_arrays
from .metrics.scorer import _deprecate_loss_and_score_funcs


__all__ = ['GridSearchCV', 'ParameterGrid', 'fit_grid_point',
           'ParameterSampler', 'RandomizedSearchCV']


class ParameterGrid(object):
    """Grid of parameters with a discrete number of values for each.

    Can be used to iterate over parameter value combinations with the
    Python built-in function iter.

    Parameters
    ----------
    param_grid : dict of string to sequence, or sequence of such
        The parameter grid to explore, as a dictionary mapping estimator
        parameters to sequences of allowed values.

        An empty dict signifies default parameters.

        A sequence of dicts signifies a sequence of grids to search, and is
        useful to avoid exploring parameter combinations that make no sense
        or have no effect. See the examples below.

    Examples
    --------
    >>> from sklearn.grid_search import ParameterGrid
    >>> param_grid = {'a': [1, 2], 'b': [True, False]}
    >>> list(ParameterGrid(param_grid)) == (
    ...    [{'a': 1, 'b': True}, {'a': 1, 'b': False},
    ...     {'a': 2, 'b': True}, {'a': 2, 'b': False}])
    True

    >>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}]
    >>> list(ParameterGrid(grid)) == [{'kernel': 'linear'},
    ...                               {'kernel': 'rbf', 'gamma': 1},
    ...                               {'kernel': 'rbf', 'gamma': 10}]
    True

    See also
    --------
    :class:`GridSearchCV`:
        uses ``ParameterGrid`` to perform a full parallelized parameter search.
    """

    def __init__(self, param_grid):
        if isinstance(param_grid, Mapping):
            # wrap dictionary in a singleton list
            # XXX Why? The behavior when passing a list is undocumented,
            # but not doing this breaks one of the tests.
            param_grid = [param_grid]
        self.param_grid = param_grid

    def __iter__(self):
        """Iterate over the points in the grid.

        Returns
        -------
        params : iterator over dict of string to any
            Yields dictionaries mapping each estimator parameter to one of its
            allowed values.
        """
        for p in self.param_grid:
            # Always sort the keys of a dictionary, for reproducibility
            items = sorted(p.items())
            if not items:
                yield {}
            else:
                keys, values = zip(*items)
                for v in product(*values):
                    params = dict(zip(keys, v))
                    yield params

    def __len__(self):
        """Number of points on the grid."""
        # Product function that can handle iterables (np.product can't).
        product = partial(reduce, operator.mul)
        return sum(product(len(v) for v in p.values()) if p else 1
                   for p in self.param_grid)


class IterGrid(ParameterGrid):
    """Generators on the combination of the various parameter lists given.

    This class is DEPRECATED. It was renamed to ``ParameterGrid``. The name
    ``IterGrid`` will be removed in 0.15.

    Parameters
    ----------
    param_grid : dict of string to sequence
        The parameter grid to explore, as a dictionary mapping estimator
        parameters to sequences of allowed values.

    Returns
    -------
    params : dict of string to any
        **Yields** dictionaries mapping each estimator parameter to one of its
        allowed values.

    Examples
    --------
    >>> from sklearn.grid_search import IterGrid
    >>> param_grid = {'a':[1, 2], 'b':[True, False]}
    >>> list(IterGrid(param_grid)) == (
    ...    [{'a': 1, 'b': True}, {'a': 1, 'b': False},
    ...     {'a': 2, 'b': True}, {'a': 2, 'b': False}])
    True

    See also
    --------
    :class:`GridSearchCV`:
        uses ``IterGrid`` to perform a full parallelized parameter search.
    """

    def __init__(self, param_grid):
        warnings.warn("IterGrid was renamed to ParameterGrid and will be"
                      " removed in 0.15.", DeprecationWarning)
        super(IterGrid, self).__init__(param_grid)


class ParameterSampler(object):
    """Generator on parameters sampled from given distributions.

    Non-deterministic iterable over random candidate combinations for hyper-
    parameter search.

    Note that as of SciPy 0.12, the ``scipy.stats.distributions`` do not accept
    a custom RNG instance and always use the singleton RNG from
    ``numpy.random``. Hence setting ``random_state`` will not guarantee a
    deterministic iteration whenever ``scipy.stats`` distributions are used to
    define the parameter search space.

    Parameters
    ----------
    param_distributions : dict
        Dictionary where the keys are parameters and values
        are distributions from which a parameter is to be sampled.
        Distributions either have to provide a ``rvs`` function
        to sample from them, or can be given as a list of values,
        where a uniform distribution is assumed.

    n_iter : integer
        Number of parameter settings that are produced.

    random_state : int or RandomState
        Pseudo random number generator state used for random uniform sampling
        from lists of possible values instead of scipy.stats distributions.

    Returns
    -------
    params : dict of string to any
        **Yields** dictionaries mapping each estimator parameter to
        as sampled value.

    Examples
    --------
    >>> from sklearn.grid_search import ParameterSampler
    >>> from scipy.stats.distributions import expon
    >>> import numpy as np
    >>> np.random.seed(0)
    >>> param_grid = {'a':[1, 2], 'b': expon()}
    >>> param_list = list(ParameterSampler(param_grid, n_iter=4))
    >>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items())
    ...                 for d in param_list]
    >>> rounded_list == [{'b': 0.89856, 'a': 1},
    ...                  {'b': 0.923223, 'a': 1},
    ...                  {'b': 1.878964, 'a': 2},
    ...                  {'b': 1.038159, 'a': 2}]
    True
    """
    def __init__(self, param_distributions, n_iter, random_state=None):
        self.param_distributions = param_distributions
        self.n_iter = n_iter
        self.random_state = random_state

    def __iter__(self):
        rnd = check_random_state(self.random_state)
        # Always sort the keys of a dictionary, for reproducibility
        items = sorted(self.param_distributions.items())
        for _ in range(self.n_iter):
            params = dict()
            for k, v in items:
                if hasattr(v, "rvs"):
                    params[k] = v.rvs()
                else:
                    params[k] = v[rnd.randint(len(v))]
            yield params

    def __len__(self):
        """Number of points that will be sampled."""
        return self.n_iter


def fit_grid_point(X, y, base_estimator, parameters, train, test, scorer,
                   verbose, loss_func=None, **fit_params):
    """Run fit on one set of parameters.

    Parameters
    ----------
    X : array-like, sparse matrix or list
        Input data.

    y : array-like or None
        Targets for input data.

    base_estimator : estimator object
        This estimator will be cloned and then fitted.

    parameters : dict
        Parameters to be set on base_estimator clone for this grid point.

    train : ndarray, dtype int or bool
        Boolean mask or indices for training set.

    test : ndarray, dtype int or bool
        Boolean mask or indices for test set.

    scorer : callable or None.
        If provided must be a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    verbose : int
        Verbosity level.

    **fit_params : kwargs
        Additional parameter passed to the fit function of the estimator.


    Returns
    -------
    score : float
        Score of this parameter setting on given training / test split.

    parameters : dict
        The parameters that have been evaluated.

    n_samples_test : int
        Number of test samples in this split.
    """
    if verbose > 1:
        start_time = time.time()
        msg = '%s' % (', '.join('%s=%s' % (k, v)
                      for k, v in parameters.items()))
        print("[GridSearchCV] %s %s" % (msg, (64 - len(msg)) * '.'))

    # update parameters of the classifier after a copy of its base structure
    clf = clone(base_estimator)
    clf.set_params(**parameters)

    if hasattr(base_estimator, 'kernel') and callable(base_estimator.kernel):
        # cannot compute the kernel values with custom function
        raise ValueError("Cannot use a custom kernel function. "
                         "Precompute the kernel matrix instead.")

    if not hasattr(X, "shape"):
        if getattr(base_estimator, "_pairwise", False):
            raise ValueError("Precomputed kernels or affinity matrices have "
                             "to be passed as arrays or sparse matrices.")
        X_train = [X[idx] for idx in train]
        X_test = [X[idx] for idx in test]
    else:
        if getattr(base_estimator, "_pairwise", False):
            # X is a precomputed square kernel matrix
            if X.shape[0] != X.shape[1]:
                raise ValueError("X should be a square kernel matrix")
            X_train = X[np.ix_(train, train)]
            X_test = X[np.ix_(test, train)]
        else:
            X_train = X[safe_mask(X, train)]
            X_test = X[safe_mask(X, test)]

    if y is not None:
        y_test = y[safe_mask(y, test)]
        y_train = y[safe_mask(y, train)]
        clf.fit(X_train, y_train, **fit_params)

        if scorer is not None:
            this_score = scorer(clf, X_test, y_test)
        else:
            this_score = clf.score(X_test, y_test)
    else:
        clf.fit(X_train, **fit_params)
        if scorer is not None:
            this_score = scorer(clf, X_test)
        else:
            this_score = clf.score(X_test)

    if not isinstance(this_score, numbers.Number):
        raise ValueError("scoring must return a number, got %s (%s)"
                         " instead." % (str(this_score), type(this_score)))

    if verbose > 2:
        msg += ", score=%f" % this_score
    if verbose > 1:
        end_msg = "%s -%s" % (msg,
                              logger.short_format_time(time.time() -
                                                       start_time))
        print("[GridSearchCV] %s %s" % ((64 - len(end_msg)) * '.', end_msg))
    return this_score, parameters, _num_samples(X_test)


def _check_param_grid(param_grid):
    if hasattr(param_grid, 'items'):
        param_grid = [param_grid]

    for p in param_grid:
        for v in p.values():
            if isinstance(v, np.ndarray) and v.ndim > 1:
                raise ValueError("Parameter array should be one-dimensional.")

            check = [isinstance(v, k) for k in (list, tuple, np.ndarray)]
            if not True in check:
                raise ValueError("Parameter values should be a list.")

            if len(v) == 0:
                raise ValueError("Parameter values should be a non-empty "
                                 "list.")


class _CVScoreTuple (namedtuple('_CVScoreTuple',
                                ('parameters',
                                 'mean_validation_score',
                                 'cv_validation_scores'))):
    # A raw namedtuple is very memory efficient as it packs the attributes
    # in a struct to get rid of the __dict__ of attributes in particular it
    # does not copy the string for the keys on each instance.
    # By deriving a namedtuple class just to introduce the __repr__ method we
    # would also reintroduce the __dict__ on the instance. By telling the
    # Python interpreter that this subclass uses static __slots__ instead of
    # dynamic attributes. Furthermore we don't need any additional slot in the
    # subclass so we set __slots__ to the empty tuple.
    __slots__ = ()

    def __repr__(self):
        """Simple custom repr to summarize the main info"""
        return "mean: {0:.5f}, std: {1:.5f}, params: {2}".format(
            self.mean_validation_score,
            np.std(self.cv_validation_scores),
            self.parameters)


class BaseSearchCV(six.with_metaclass(ABCMeta, BaseEstimator,
                                      MetaEstimatorMixin)):
    """Base class for hyper parameter search with cross-validation."""

    @abstractmethod
    def __init__(self, estimator, scoring=None, loss_func=None,
                 score_func=None, fit_params=None, n_jobs=1, iid=True,
                 refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs'):

        self.scoring = scoring
        self.estimator = estimator
        self.loss_func = loss_func
        self.score_func = score_func
        self.n_jobs = n_jobs
        self.fit_params = fit_params if fit_params is not None else {}
        self.iid = iid
        self.refit = refit
        self.cv = cv
        self.verbose = verbose
        self.pre_dispatch = pre_dispatch
        self._check_estimator()

    def score(self, X, y=None):
        """Returns the score on the given test data and labels, if the search
        estimator has been refit. The ``score`` function of the best estimator
        is used, or the ``scoring`` parameter where unavailable.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Input data, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples] or [n_samples, n_output], optional
            Target relative to X for classification or regression;
            None for unsupervised learning.

        Returns
        -------
        score : float

        """
        if hasattr(self.best_estimator_, 'score'):
            return self.best_estimator_.score(X, y)
        if self.scorer_ is None:
            raise ValueError("No score function explicitly defined, "
                             "and the estimator doesn't provide one %s"
                             % self.best_estimator_)
        return self.scorer_(self.best_estimator_, X, y)

    @property
    def predict(self):
        return self.best_estimator_.predict

    @property
    def predict_proba(self):
        return self.best_estimator_.predict_proba

    @property
    def decision_function(self):
        return self.best_estimator_.decision_function

    @property
    def transform(self):
        return self.best_estimator_.transform

    def _check_estimator(self):
        """Check that estimator can be fitted and score can be computed."""
        if (not hasattr(self.estimator, 'fit') or
                not (hasattr(self.estimator, 'predict')
                     or hasattr(self.estimator, 'score'))):
            raise TypeError("estimator should a be an estimator implementing"
                            " 'fit' and 'predict' or 'score' methods,"
                            " %s (type %s) was passed" %
                            (self.estimator, type(self.estimator)))
        if (self.scoring is None and self.loss_func is None and self.score_func
                is None):
            if not hasattr(self.estimator, 'score'):
                raise TypeError(
                    "If no scoring is specified, the estimator passed "
                    "should have a 'score' method. The estimator %s "
                    "does not." % self.estimator)

    def _fit(self, X, y, parameter_iterable):
        """Actual fitting,  performing the search over parameters."""

        estimator = self.estimator
        cv = self.cv

        n_samples = _num_samples(X)
        X, y = check_arrays(X, y, allow_lists=True, sparse_format='csr')

        self.scorer_ = _deprecate_loss_and_score_funcs(
            self.loss_func, self.score_func, self.scoring)

        if y is not None:
            if len(y) != n_samples:
                raise ValueError('Target variable (y) has a different number '
                                 'of samples (%i) than data (X: %i samples)'
                                 % (len(y), n_samples))
            y = np.asarray(y)
        cv = check_cv(cv, X, y, classifier=is_classifier(estimator))

        if self.verbose > 0:
            if isinstance(parameter_iterable, Sized):
                n_candidates = len(parameter_iterable)
                print("Fitting {0} folds for each of {1} candidates, totalling"
                      " {2} fits".format(len(cv), n_candidates,
                                         n_candidates * len(cv)))

        base_estimator = clone(self.estimator)

        pre_dispatch = self.pre_dispatch

        out = Parallel(
            n_jobs=self.n_jobs, verbose=self.verbose,
            pre_dispatch=pre_dispatch)(
                delayed(fit_grid_point)(
                    X, y, base_estimator, parameters, train, test,
                    self.scorer_, self.verbose, **self.fit_params)
                for parameters in parameter_iterable
                for train, test in cv)

        # Out is a list of triplet: score, estimator, n_test_samples
        n_fits = len(out)
        n_folds = len(cv)

        scores = list()
        grid_scores = list()
        for grid_start in range(0, n_fits, n_folds):
            n_test_samples = 0
            score = 0
            all_scores = []
            for this_score, parameters, this_n_test_samples in \
                    out[grid_start:grid_start + n_folds]:
                all_scores.append(this_score)
                if self.iid:
                    this_score *= this_n_test_samples
                    n_test_samples += this_n_test_samples
                score += this_score
            if self.iid:
                score /= float(n_test_samples)
            else:
                score /= float(n_folds)
            scores.append((score, parameters))
            # TODO: shall we also store the test_fold_sizes?
            grid_scores.append(_CVScoreTuple(
                parameters,
                score,
                np.array(all_scores)))
        # Store the computed scores
        self.grid_scores_ = grid_scores

        # Find the best parameters by comparing on the mean validation score:
        # note that `sorted` is deterministic in the way it breaks ties
        best = sorted(grid_scores, key=lambda x: x.mean_validation_score,
                      reverse=True)[0]
        self.best_params_ = best.parameters
        self.best_score_ = best.mean_validation_score

        if self.refit:
            # fit the best estimator using the entire dataset
            # clone first to work around broken estimators
            best_estimator = clone(base_estimator).set_params(
                **best.parameters)
            if y is not None:
                best_estimator.fit(X, y, **self.fit_params)
            else:
                best_estimator.fit(X, **self.fit_params)
            self.best_estimator_ = best_estimator
        return self


class GridSearchCV(BaseSearchCV):
    """Exhaustive search over specified parameter values for an estimator.

    Important members are fit, predict.

    GridSearchCV implements a "fit" method and a "predict" method like
    any classifier except that the parameters of the classifier
    used to predict is optimized by cross-validation.

    Parameters
    ----------
    estimator : object type that implements the "fit" and "predict" methods
        A object of that type is instantiated for each grid point.

    param_grid : dict or list of dictionaries
        Dictionary with parameters names (string) as keys and lists of
        parameter settings to try as values, or a list of such
        dictionaries, in which case the grids spanned by each dictionary
        in the list are explored. This enables searching over any sequence
        of parameter settings.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    fit_params : dict, optional
        Parameters to pass to the fit method.

    n_jobs : int, optional
        Number of jobs to run in parallel (default 1).

    pre_dispatch : int, or string, optional
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

            - None, in which case all the jobs are immediately
              created and spawned. Use this for lightweight and
              fast-running jobs, to avoid delays due to on-demand
              spawning of the jobs

            - An int, giving the exact number of total jobs that are
              spawned

            - A string, giving an expression as a function of n_jobs,
              as in '2*n_jobs'

    iid : boolean, optional
        If True, the data is assumed to be identically distributed across
        the folds, and the loss minimized is the total loss per sample,
        and not the mean loss across the folds.

    cv : integer or cross-validation generator, optional
        If an integer is passed, it is the number of folds (default 3).
        Specific cross-validation objects can be passed, see
        sklearn.cross_validation module for the list of possible objects

    refit : boolean
        Refit the best estimator with the entire dataset.
        If "False", it is impossible to make predictions using
        this GridSearchCV instance after fitting.

    verbose : integer
        Controls the verbosity: the higher, the more messages.

    Examples
    --------
    >>> from sklearn import svm, grid_search, datasets
    >>> iris = datasets.load_iris()
    >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
    >>> svr = svm.SVC()
    >>> clf = grid_search.GridSearchCV(svr, parameters)
    >>> clf.fit(iris.data, iris.target)
    ...                             # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
    GridSearchCV(cv=None,
           estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=..., degree=..., gamma=...,
       kernel='rbf', max_iter=-1, probability=False, random_state=None,
       shrinking=True, tol=..., verbose=False),
           fit_params={}, iid=..., loss_func=..., n_jobs=1,
           param_grid=..., pre_dispatch=..., refit=..., score_func=...,
           scoring=..., verbose=...)


    Attributes
    ----------
    `grid_scores_` : list of named tuples
        Contains scores for all parameter combinations in param_grid.
        Each entry corresponds to one parameter setting.
        Each named tuple has the attributes:

            * ``parameters``, a dict of parameter settings
            * ``mean_validation_score``, the mean score over the
              cross-validation folds
            * ``cv_validation_scores``, the list of scores for each fold

    `best_estimator_` : estimator
        Estimator that was chosen by the search, i.e. estimator
        which gave highest score (or smallest loss if specified)
        on the left out data.

    `best_score_` : float
        Score of best_estimator on the left out data.

    `best_params_` : dict
        Parameter setting that gave the best results on the hold out data.

    Notes
    ------
    The parameters selected are those that maximize the score of the left out
    data, unless an explicit score is passed in which case it is used instead.

    If `n_jobs` was set to a value higher than one, the data is copied for each
    point in the grid (and not `n_jobs` times). This is done for efficiency
    reasons if individual jobs take very little time, but may raise errors if
    the dataset is large and not enough memory is available.  A workaround in
    this case is to set `pre_dispatch`. Then, the memory is copied only
    `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 *
    n_jobs`.

    See Also
    ---------
    :class:`ParameterGrid`:
        generates all the combinations of a an hyperparameter grid.

    :func:`sklearn.cross_validation.train_test_split`:
        utility function to split the data into a development set usable
        for fitting a GridSearchCV instance and an evaluation set for
        its final evaluation.

    """

    def __init__(self, estimator, param_grid, scoring=None, loss_func=None,
                 score_func=None, fit_params=None, n_jobs=1, iid=True,
                 refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs'):
        super(GridSearchCV, self).__init__(
            estimator, scoring, loss_func, score_func, fit_params, n_jobs, iid,
            refit, cv, verbose, pre_dispatch)
        self.param_grid = param_grid
        _check_param_grid(param_grid)

    def fit(self, X, y=None, **params):
        """Run fit with all sets of parameters.

        Parameters
        ----------

        X : array-like, shape = [n_samples, n_features]
            Training vector, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples] or [n_samples, n_output], optional
            Target relative to X for classification or regression;
            None for unsupervised learning.

        """
        if params:
            warnings.warn("Additional parameters to GridSearchCV are ignored!"
                          " The params argument will be removed in 0.15.",
                          DeprecationWarning)
        return self._fit(X, y, ParameterGrid(self.param_grid))


class RandomizedSearchCV(BaseSearchCV):
    """Randomized search on hyper parameters.

    RandomizedSearchCV implements a "fit" method and a "predict" method like
    any classifier except that the parameters of the classifier
    used to predict is optimized by cross-validation.

    In contrast to GridSearchCV, not all parameter values are tried out, but
    rather a fixed number of parameter settings is sampled from the specified
    distributions. The number of parameter settings that are tried is
    given by n_iter.

    Parameters
    ----------
    estimator : object type that implements the "fit" and "predict" methods
        A object of that type is instantiated for each parameter setting.

    param_distributions : dict
        Dictionary with parameters names (string) as keys and distributions
        or lists of parameters to try. Distributions must provide a ``rvs``
        method for sampling (such as those from scipy.stats.distributions).
        If a list is given, it is sampled uniformly.

    n_iter : int, default=10
        Number of parameter settings that are sampled. n_iter trades
        off runtime vs quality of the solution.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    fit_params : dict, optional
        Parameters to pass to the fit method.

    n_jobs : int, optional
        Number of jobs to run in parallel (default 1).

    pre_dispatch : int, or string, optional
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

            - None, in which case all the jobs are immediately
              created and spawned. Use this for lightweight and
              fast-running jobs, to avoid delays due to on-demand
              spawning of the jobs

            - An int, giving the exact number of total jobs that are
              spawned

            - A string, giving an expression as a function of n_jobs,
              as in '2*n_jobs'

    iid : boolean, optional
        If True, the data is assumed to be identically distributed across
        the folds, and the loss minimized is the total loss per sample,
        and not the mean loss across the folds.

    cv : integer or cross-validation generator, optional
        If an integer is passed, it is the number of folds (default 3).
        Specific cross-validation objects can be passed, see
        sklearn.cross_validation module for the list of possible objects

    refit : boolean
        Refit the best estimator with the entire dataset.
        If "False", it is impossible to make predictions using
        this RandomizedSearchCV instance after fitting.

    verbose : integer
        Controls the verbosity: the higher, the more messages.


    Attributes
    ----------
    `grid_scores_` : list of named tuples
        Contains scores for all parameter combinations in param_grid.
        Each entry corresponds to one parameter setting.
        Each named tuple has the attributes:

            * ``parameters``, a dict of parameter settings
            * ``mean_validation_score``, the mean score over the
              cross-validation folds
            * ``cv_validation_scores``, the list of scores for each fold

    `best_estimator_` : estimator
        Estimator that was chosen by the search, i.e. estimator
        which gave highest score (or smallest loss if specified)
        on the left out data.

    `best_score_` : float
        Score of best_estimator on the left out data.

    `best_params_` : dict
        Parameter setting that gave the best results on the hold out data.

    Notes
    -----
    The parameters selected are those that maximize the score of the held-out
    data, according to the scoring parameter.

    If `n_jobs` was set to a value higher than one, the data is copied for each
    parameter setting(and not `n_jobs` times). This is done for efficiency
    reasons if individual jobs take very little time, but may raise errors if
    the dataset is large and not enough memory is available.  A workaround in
    this case is to set `pre_dispatch`. Then, the memory is copied only
    `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 *
    n_jobs`.

    See Also
    --------
    :class:`GridSearchCV`:
        Does exhaustive search over a grid of parameters.

    :class:`ParameterSampler`:
        A generator over parameter settins, constructed from
        param_distributions.

    """

    def __init__(self, estimator, param_distributions, n_iter=10, scoring=None,
                 fit_params=None, n_jobs=1, iid=True, refit=True, cv=None,
                 verbose=0, pre_dispatch='2*n_jobs', random_state=None):

        self.param_distributions = param_distributions
        self.n_iter = n_iter
        self.random_state = random_state
        super(RandomizedSearchCV, self).__init__(
            estimator=estimator, scoring=scoring, fit_params=fit_params,
            n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose,
            pre_dispatch=pre_dispatch)

    def fit(self, X, y=None):
        """Run fit on the estimator with randomly drawn parameters.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples] or [n_samples, n_output], optional
            Target relative to X for classification or regression;
            None for unsupervised learning.

        """
        sampled_params = ParameterSampler(self.param_distributions,
                                          self.n_iter,
                                          random_state=self.random_state)
        return self._fit(X, y, sampled_params)