This file is indexed.

/usr/share/pyshared/sklearn/ensemble/base.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""
Base class for ensemble-based estimators.
"""

# Authors: Gilles Louppe
# License: BSD 3 clause

from ..base import clone
from ..base import BaseEstimator
from ..base import MetaEstimatorMixin


class BaseEnsemble(BaseEstimator, MetaEstimatorMixin):
    """Base class for all ensemble classes.

    Warning: This class should not be used directly. Use derived classes
    instead.

    Parameters
    ----------
    base_estimator : object, optional (default=None)
        The base estimator from which the ensemble is built.

    n_estimators : integer
        The number of estimators in the ensemble.

    estimator_params : list of strings
        The list of attributes to use as parameters when instantiating a
        new base estimator. If none are given, default parameters are used.
    """

    def __init__(self, base_estimator, n_estimators=10,
                 estimator_params=tuple()):

        # Check parameters
        if not isinstance(base_estimator, BaseEstimator):
            raise TypeError("estimator must be a subclass of BaseEstimator")
        if n_estimators <= 0:
            raise ValueError("n_estimators must be greater than zero.")

        # Set parameters
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.estimator_params = estimator_params

        # Don't instantiate estimators now! Parameters of base_estimator might
        # still change. Eg., when grid-searching with the nested object syntax.
        # This needs to be filled by the derived classes.
        self.estimators_ = []

    def _make_estimator(self, append=True):
        """Makes, configures and returns a copy of the base estimator.

        Warning: This method should be used to properly instantiate new
        sub-estimators.
        """
        estimator = clone(self.base_estimator)
        estimator.set_params(**dict((p, getattr(self, p))
                                    for p in self.estimator_params))

        if append:
            self.estimators_.append(estimator)

        return estimator

    def __len__(self):
        """Returns the number of estimators in the ensemble."""
        return len(self.estimators_)

    def __getitem__(self, index):
        """Returns the index'th estimator in the ensemble."""
        return self.estimators_[index]

    def __iter__(self):
        """Returns iterator over estimators in the ensemble."""
        return iter(self.estimators_)