/usr/share/pyshared/sklearn/ensemble/base.py is in python-sklearn 0.14.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | """
Base class for ensemble-based estimators.
"""
# Authors: Gilles Louppe
# License: BSD 3 clause
from ..base import clone
from ..base import BaseEstimator
from ..base import MetaEstimatorMixin
class BaseEnsemble(BaseEstimator, MetaEstimatorMixin):
"""Base class for all ensemble classes.
Warning: This class should not be used directly. Use derived classes
instead.
Parameters
----------
base_estimator : object, optional (default=None)
The base estimator from which the ensemble is built.
n_estimators : integer
The number of estimators in the ensemble.
estimator_params : list of strings
The list of attributes to use as parameters when instantiating a
new base estimator. If none are given, default parameters are used.
"""
def __init__(self, base_estimator, n_estimators=10,
estimator_params=tuple()):
# Check parameters
if not isinstance(base_estimator, BaseEstimator):
raise TypeError("estimator must be a subclass of BaseEstimator")
if n_estimators <= 0:
raise ValueError("n_estimators must be greater than zero.")
# Set parameters
self.base_estimator = base_estimator
self.n_estimators = n_estimators
self.estimator_params = estimator_params
# Don't instantiate estimators now! Parameters of base_estimator might
# still change. Eg., when grid-searching with the nested object syntax.
# This needs to be filled by the derived classes.
self.estimators_ = []
def _make_estimator(self, append=True):
"""Makes, configures and returns a copy of the base estimator.
Warning: This method should be used to properly instantiate new
sub-estimators.
"""
estimator = clone(self.base_estimator)
estimator.set_params(**dict((p, getattr(self, p))
for p in self.estimator_params))
if append:
self.estimators_.append(estimator)
return estimator
def __len__(self):
"""Returns the number of estimators in the ensemble."""
return len(self.estimators_)
def __getitem__(self, index):
"""Returns the index'th estimator in the ensemble."""
return self.estimators_[index]
def __iter__(self):
"""Returns iterator over estimators in the ensemble."""
return iter(self.estimators_)
|