This file is indexed.

/usr/share/pyshared/sklearn/decomposition/pca.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
""" Principal Component Analysis
"""

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Olivier Grisel <olivier.grisel@ensta.org>
#         Mathieu Blondel <mathieu@mblondel.org>
# License: BSD 3 clause

import numpy as np
from scipy import linalg
from math import log
import warnings

from ..base import BaseEstimator, TransformerMixin
from ..utils import array2d, check_random_state, as_float_array
from ..utils import atleast2d_or_csr
from ..utils.extmath import fast_logdet
from ..utils.extmath import safe_sparse_dot
from ..utils.extmath import randomized_svd


def _assess_dimension_(spectrum, rank, n_samples, n_features):
    """Compute the likelihood of a rank ``rank`` dataset

    The dataset is assumed to be embedded in gaussian noise of shape(n,
    dimf) having spectrum ``spectrum``.

    Parameters
    ----------
    spectrum: array of shape (n)
        data spectrum
    rank: int,
        tested rank value
    n_samples: int,
        number of samples
    dim: int,
        embedding/empirical dimension

    Returns
    -------
    ll: float,
        The log-likelihood

    Notes
    -----
    This implements the method of `Thomas P. Minka:
    Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604`
    """
    if rank > len(spectrum):
        raise ValueError("The tested rank cannot exceed the rank of the"
                         " dataset")
    from scipy.special import gammaln

    pu = -rank * np.log(2)
    for i in range(rank):
        pu += (gammaln((n_features - i) / 2)
               - np.log(np.pi) * (n_features - i) / 2)

    pl = np.sum(np.log(spectrum[:rank]))
    pl = -pl * n_samples / 2

    if rank == n_features:
        pv = 0
        v = 1
    else:
        v = np.sum(spectrum[rank:]) / (n_features - rank)
        pv = -np.log(v) * n_samples * (n_features - rank) / 2

    m = n_features * rank - rank * (rank + 1) / 2
    pp = np.log(2 * np.pi) * (m + rank + 1) / 2

    pa = 0
    spectrum_ = spectrum.copy()
    spectrum_[rank:n_features] = v
    for i in range(rank):
        for j in range(i + 1, len(spectrum)):
            pa += (np.log((spectrum[i] - spectrum[j])
                          * (1. / spectrum_[j] - 1. / spectrum_[i]))
                   + np.log(n_samples))

    ll = pu + pl + pv + pp - pa / 2 - rank * np.log(n_samples) / 2

    return ll


def _infer_dimension_(spectrum, n_samples, n_features):
    """Infers the dimension of a dataset of shape (n_samples, n_features)

    The dataset is described by its spectrum `spectrum`.
    """
    ll = []
    for rank in range(len(spectrum)):
        ll.append(_assess_dimension_(spectrum, rank, n_samples, n_features))
    ll = np.array(ll)
    return ll.argmax()


class PCA(BaseEstimator, TransformerMixin):
    """Principal component analysis (PCA)

    Linear dimensionality reduction using Singular Value Decomposition of the
    data and keeping only the most significant singular vectors to project the
    data to a lower dimensional space.

    This implementation uses the scipy.linalg implementation of the singular
    value decomposition. It only works for dense arrays and is not scalable to
    large dimensional data.

    The time complexity of this implementation is ``O(n ** 3)`` assuming
    n ~ n_samples ~ n_features.

    Parameters
    ----------
    n_components : int, None or string
        Number of components to keep.
        if n_components is not set all components are kept::

            n_components == min(n_samples, n_features)

        if n_components == 'mle', Minka\'s MLE is used to guess the dimension
        if ``0 < n_components < 1``, select the number of components such that
        the amount of variance that needs to be explained is greater than the
        percentage specified by n_components

    copy : bool
        If False, data passed to fit are overwritten and running
        fit(X).transform(X) will not yield the expected results,
        use fit_transform(X) instead.

    whiten : bool, optional
        When True (False by default) the `components_` vectors are divided
        by n_samples times singular values to ensure uncorrelated outputs
        with unit component-wise variances.

        Whitening will remove some information from the transformed signal
        (the relative variance scales of the components) but can sometime
        improve the predictive accuracy of the downstream estimators by
        making there data respect some hard-wired assumptions.

    Attributes
    ----------
    `components_` : array, [n_components, n_features]
        Components with maximum variance.

    `explained_variance_ratio_` : array, [n_components]
        Percentage of variance explained by each of the selected components. \
        k is not set then all components are stored and the sum of explained \
        variances is equal to 1.0

    Notes
    -----
    For n_components='mle', this class uses the method of `Thomas P. Minka:
    Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604`

    Due to implementation subtleties of the Singular Value Decomposition (SVD),
    which is used in this implementation, running fit twice on the same matrix
    can lead to principal components with signs flipped (change in direction).
    For this reason, it is important to always use the same estimator object to
    transform data in a consistent fashion.

    Examples
    --------

    >>> import numpy as np
    >>> from sklearn.decomposition import PCA
    >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    >>> pca = PCA(n_components=2)
    >>> pca.fit(X)
    PCA(copy=True, n_components=2, whiten=False)
    >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS
    [ 0.99244...  0.00755...]

    See also
    --------
    ProbabilisticPCA
    RandomizedPCA
    KernelPCA
    SparsePCA
    TruncatedSVD
    """
    def __init__(self, n_components=None, copy=True, whiten=False):
        self.n_components = n_components
        self.copy = copy
        self.whiten = whiten

    def fit(self, X, y=None):
        """Fit the model with X.

        Parameters
        ----------
        X: array-like, shape (n_samples, n_features)
            Training data, where n_samples in the number of samples
            and n_features is the number of features.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        self._fit(X)
        return self

    def fit_transform(self, X, y=None):
        """Fit the model with X and apply the dimensionality reduction on X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)

        """
        U, S, V = self._fit(X)
        U = U[:, :self.n_components]

        if self.whiten:
            # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples)
            U *= np.sqrt(X.shape[0])
        else:
            # X_new = X * V = U * S * V^T * V = U * S
            U *= S[:self.n_components]

        return U

    def _fit(self, X):
        """ Fit the model on X
        Parameters
        ----------
        X: array-like, shape (n_samples, n_features)
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.

        Returns
        -------
        U, s, V : ndarrays
            The SVD of the input data, copied and centered when
            requested.
        """
        X = array2d(X)
        n_samples, n_features = X.shape
        X = as_float_array(X, copy=self.copy)
        # Center data
        self.mean_ = np.mean(X, axis=0)
        X -= self.mean_
        U, S, V = linalg.svd(X, full_matrices=False)
        self.explained_variance_ = (S ** 2) / n_samples
        self.explained_variance_ratio_ = (self.explained_variance_ /
                                          self.explained_variance_.sum())

        if self.whiten:
            self.components_ = V / S[:, np.newaxis] * np.sqrt(n_samples)
        else:
            self.components_ = V

        if self.n_components == 'mle':
            if n_samples < n_features:
                raise ValueError("n_components='mle' is only supported "
                                 "if n_samples >= n_features")
            self.n_components = _infer_dimension_(self.explained_variance_,
                                                  n_samples, n_features)

        elif (self.n_components is not None
              and 0 < self.n_components
              and self.n_components < 1.0):
            # number of components for which the cumulated explained variance
            # percentage is superior to the desired threshold
            ratio_cumsum = self.explained_variance_ratio_.cumsum()
            self.n_components = np.sum(ratio_cumsum < self.n_components) + 1

        if self.n_components is not None:
            self.components_ = self.components_[:self.n_components, :]
            self.explained_variance_ = \
                self.explained_variance_[:self.n_components]
            self.explained_variance_ratio_ = \
                self.explained_variance_ratio_[:self.n_components]

        return (U, S, V)

    def transform(self, X):
        """Apply the dimensionality reduction on X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            New data, where n_samples is the number of samples
            and n_features is the number of features.

        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)

        """
        X = array2d(X)
        if self.mean_ is not None:
            X = X - self.mean_
        X_transformed = np.dot(X, self.components_.T)
        return X_transformed

    def inverse_transform(self, X):
        """Transform data back to its original space, i.e.,
        return an input X_original whose transform would be X

        Parameters
        ----------
        X : array-like, shape (n_samples, n_components)
            New data, where n_samples is the number of samples
            and n_components is the number of components.

        Returns
        -------
        X_original array-like, shape (n_samples, n_features)

        Notes
        -----
        If whitening is enabled, inverse_transform does not compute the
        exact inverse operation as transform.
        """
        return np.dot(X, self.components_) + self.mean_


class ProbabilisticPCA(PCA):
    """Additional layer on top of PCA that adds a probabilistic evaluation"""
    __doc__ += PCA.__doc__

    def fit(self, X, y=None, homoscedastic=True):
        """Additionally to PCA.fit, learns a covariance model

        Parameters
        ----------
        X : array of shape(n_samples, n_features)
            The data to fit

        homoscedastic : bool, optional,
            If True, average variance across remaining dimensions
        """
        PCA.fit(self, X)
        n_features = X.shape[1]
        self._dim = n_features
        Xr = X - self.mean_
        Xr -= np.dot(np.dot(Xr, self.components_.T), self.components_)
        n_samples = X.shape[0]
        if self.n_components is None or n_features <= self.n_components:
            delta = np.zeros(n_features)
        elif homoscedastic:
            delta = ((Xr ** 2).sum() * np.ones(n_features)
                     / (n_samples * n_features))
        else:
            delta = (Xr ** 2).mean(0) / (n_features - self.n_components)
        self.covariance_ = np.diag(delta)
        n_components = self.n_components
        if n_components is None:
            n_components = n_features
        for k in range(n_components):
            add_cov = np.outer(self.components_[k], self.components_[k])
            self.covariance_ += self.explained_variance_[k] * add_cov
        return self

    def score(self, X, y=None):
        """Return a score associated to new data

        Parameters
        ----------
        X: array of shape(n_samples, n_features)
            The data to test

        Returns
        -------
        ll: array of shape (n_samples),
            log-likelihood of each row of X under the current model
        """
        Xr = X - self.mean_
        n_features = X.shape[1]
        log_like = np.zeros(X.shape[0])
        self.precision_ = linalg.inv(self.covariance_)
        log_like = -.5 * (Xr * (np.dot(Xr, self.precision_))).sum(axis=1)
        log_like -= .5 * (fast_logdet(self.covariance_)
                          + n_features * log(2 * np.pi))
        return log_like


class RandomizedPCA(BaseEstimator, TransformerMixin):
    """Principal component analysis (PCA) using randomized SVD

    Linear dimensionality reduction using approximated Singular Value
    Decomposition of the data and keeping only the most significant
    singular vectors to project the data to a lower dimensional space.

    Parameters
    ----------
    n_components : int, optional
        Maximum number of components to keep. When not given or None, this
        is set to n_features (the second dimension of the training data).

    copy : bool
        If False, data passed to fit are overwritten and running
        fit(X).transform(X) will not yield the expected results,
        use fit_transform(X) instead.

    iterated_power : int, optional
        Number of iterations for the power method. 3 by default.

    whiten : bool, optional
        When True (False by default) the `components_` vectors are divided
        by the singular values to ensure uncorrelated outputs with unit
        component-wise variances.

        Whitening will remove some information from the transformed signal
        (the relative variance scales of the components) but can sometime
        improve the predictive accuracy of the downstream estimators by
        making their data respect some hard-wired assumptions.

    random_state : int or RandomState instance or None (default)
        Pseudo Random Number generator seed control. If None, use the
        numpy.random singleton.

    Attributes
    ----------
    `components_` : array, [n_components, n_features]
        Components with maximum variance.

    `explained_variance_ratio_` : array, [n_components]
        Percentage of variance explained by each of the selected components. \
        k is not set then all components are stored and the sum of explained \
        variances is equal to 1.0

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.decomposition import RandomizedPCA
    >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    >>> pca = RandomizedPCA(n_components=2)
    >>> pca.fit(X)                 # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
    RandomizedPCA(copy=True, iterated_power=3, n_components=2,
           random_state=None, whiten=False)
    >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS
    [ 0.99244...  0.00755...]

    See also
    --------
    PCA
    ProbabilisticPCA
    TruncatedSVD

    References
    ----------

    .. [Halko2009] `Finding structure with randomness: Stochastic algorithms
      for constructing approximate matrix decompositions Halko, et al., 2009
      (arXiv:909)`

    .. [MRT] `A randomized algorithm for the decomposition of matrices
      Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert`

    Notes
    -----
    This class supports sparse matrix input for backward compatibility, but
    actually computes a truncated SVD instead of a PCA in that case (i.e. no
    centering is performed). This support is deprecated; use the class
    TruncatedSVD for sparse matrix support.

    """

    def __init__(self, n_components=None, copy=True, iterated_power=3,
                 whiten=False, random_state=None):
        self.n_components = n_components
        self.copy = copy
        self.iterated_power = iterated_power
        self.whiten = whiten
        self.mean_ = None
        self.random_state = random_state

    def fit(self, X, y=None):
        """Fit the model with X.

        Parameters
        ----------
        X: array-like, shape (n_samples, n_features)
            Training data, where n_samples in the number of samples
            and n_features is the number of features.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        self._fit(X)
        return self

    def _fit(self, X):
        """Fit the model to the data X.

        Parameters
        ----------
        X: array-like, shape (n_samples, n_features)
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.

        Returns
        -------
        X : ndarray, shape (n_samples, n_features)
            The input data, copied, centered and whitened when requested.
        """
        random_state = check_random_state(self.random_state)
        if hasattr(X, 'todense'):
            warnings.warn("Sparse matrix support is deprecated"
                          " and will be dropped in 0.16."
                          " Use TruncatedSVD instead.",
                          DeprecationWarning)
        else:
            # not a sparse matrix, ensure this is a 2D array
            X = np.atleast_2d(as_float_array(X, copy=self.copy))

        n_samples = X.shape[0]

        if not hasattr(X, 'todense'):
            # Center data
            self.mean_ = np.mean(X, axis=0)
            X -= self.mean_
        if self.n_components is None:
            n_components = X.shape[1]
        else:
            n_components = self.n_components

        U, S, V = randomized_svd(X, n_components,
                                 n_iter=self.iterated_power,
                                 random_state=random_state)

        self.explained_variance_ = exp_var = (S ** 2) / n_samples
        self.explained_variance_ratio_ = exp_var / exp_var.sum()

        if self.whiten:
            self.components_ = V / S[:, np.newaxis] * np.sqrt(n_samples)
        else:
            self.components_ = V

        return X

    def transform(self, X, y=None):
        """Apply dimensionality reduction on X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            New data, where n_samples in the number of samples
            and n_features is the number of features.

        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)

        """
        # XXX remove scipy.sparse support here in 0.16
        X = atleast2d_or_csr(X)
        if self.mean_ is not None:
            X = X - self.mean_

        X = safe_sparse_dot(X, self.components_.T)
        return X

    def fit_transform(self, X, y=None):
        """Apply dimensionality reduction on X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            New data, where n_samples in the number of samples
            and n_features is the number of features.

        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)

        """
        X = self._fit(atleast2d_or_csr(X))
        X = safe_sparse_dot(X, self.components_.T)
        return X

    def inverse_transform(self, X, y=None):
        """Transform data back to its original space.

        Returns an array X_original whose transform would be X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_components)
            New data, where n_samples in the number of samples
            and n_components is the number of components.

        Returns
        -------
        X_original array-like, shape (n_samples, n_features)

        Notes
        -----
        If whitening is enabled, inverse_transform does not compute the
        exact inverse operation of transform.
        """
        # XXX remove scipy.sparse support here in 0.16
        X_original = safe_sparse_dot(X, self.components_)
        if self.mean_ is not None:
            X_original = X_original + self.mean_
        return X_original