This file is indexed.

/usr/share/pyshared/sklearn/cross_validation.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
"""
The :mod:`sklearn.cross_validation` module includes utilities for cross-
validation and performance evaluation.
"""

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>,
#         Gael Varoquaux <gael.varoquaux@normalesup.org>,
#         Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause

from __future__ import print_function

import warnings
from itertools import combinations
from math import ceil, floor, factorial
import numbers
from abc import ABCMeta, abstractmethod

import numpy as np
import scipy.sparse as sp

from .base import is_classifier, clone
from .utils import check_arrays, check_random_state, safe_mask
from .utils.fixes import unique
from .externals.joblib import Parallel, delayed
from .externals.six import string_types, with_metaclass
from .metrics.scorer import _deprecate_loss_and_score_funcs

__all__ = ['Bootstrap',
           'KFold',
           'LeaveOneLabelOut',
           'LeaveOneOut',
           'LeavePLabelOut',
           'LeavePOut',
           'ShuffleSplit',
           'StratifiedKFold',
           'StratifiedShuffleSplit',
           'check_cv',
           'cross_val_score',
           'permutation_test_score',
           'train_test_split']


class _PartitionIterator(with_metaclass(ABCMeta)):
    """Base class for CV iterators where train_mask = ~test_mask

    Implementations must define `_iter_test_masks` or `_iter_test_indices`.

    Parameters
    ----------
    n : int
        Total number of elements in dataset.

    indices : boolean, optional (default True)
        Return train/test split as arrays of indices, rather than a boolean
        mask array. Integer indices are required when dealing with sparse
        matrices, since those cannot be indexed by boolean masks.
    """

    def __init__(self, n, indices=True):
        if abs(n - int(n)) >= np.finfo('f').eps:
            raise ValueError("n must be an integer")
        self.n = int(n)
        self.indices = indices

    def __iter__(self):
        indices = self.indices
        if indices:
            ind = np.arange(self.n)
        for test_index in self._iter_test_masks():
            train_index = np.logical_not(test_index)
            if indices:
                train_index = ind[train_index]
                test_index = ind[test_index]
            yield train_index, test_index

    # Since subclasses must implement either _iter_test_masks or
    # _iter_test_indices, neither can be abstract.
    def _iter_test_masks(self):
        """Generates boolean masks corresponding to test sets.

        By default, delegates to _iter_test_indices()
        """
        for test_index in self._iter_test_indices():
            test_mask = self._empty_mask()
            test_mask[test_index] = True
            yield test_mask

    def _iter_test_indices(self):
        """Generates integer indices corresponding to test sets."""
        raise NotImplementedError

    def _empty_mask(self):
        return np.zeros(self.n, dtype=np.bool)


class LeaveOneOut(_PartitionIterator):
    """Leave-One-Out cross validation iterator.

    Provides train/test indices to split data in train test sets. Each
    sample is used once as a test set (singleton) while the remaining
    samples form the training set.

    Note: ``LeaveOneOut(n)`` is equivalent to ``KFold(n, n_folds=n)`` and
    ``LeavePOut(n, p=1)``.

    Due to the high number of test sets (which is the same as the
    number of samples) this cross validation method can be very costly.
    For large datasets one should favor KFold, StratifiedKFold or
    ShuffleSplit.

    Parameters
    ----------
    n : int
        Total number of elements in dataset.

    indices : boolean, optional (default True)
        Return train/test split as arrays of indices, rather than a boolean
        mask array. Integer indices are required when dealing with sparse
        matrices, since those cannot be indexed by boolean masks.

    Examples
    --------
    >>> from sklearn import cross_validation
    >>> X = np.array([[1, 2], [3, 4]])
    >>> y = np.array([1, 2])
    >>> loo = cross_validation.LeaveOneOut(2)
    >>> len(loo)
    2
    >>> print(loo)
    sklearn.cross_validation.LeaveOneOut(n=2)
    >>> for train_index, test_index in loo:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    ...    print(X_train, X_test, y_train, y_test)
    TRAIN: [1] TEST: [0]
    [[3 4]] [[1 2]] [2] [1]
    TRAIN: [0] TEST: [1]
    [[1 2]] [[3 4]] [1] [2]

    See also
    --------
    LeaveOneLabelOut for splitting the data according to explicit,
    domain-specific stratification of the dataset.
    """

    def _iter_test_indices(self):
        return range(self.n)

    def __repr__(self):
        return '%s.%s(n=%i)' % (
            self.__class__.__module__,
            self.__class__.__name__,
            self.n,
        )

    def __len__(self):
        return self.n


class LeavePOut(_PartitionIterator):
    """Leave-P-Out cross validation iterator

    Provides train/test indices to split data in train test sets. This results
    in testing on all distinct samples of size p, while the remaining n - p
    samples form the training set in each iteration.

    Note: ``LeavePOut(n, p)`` is NOT equivalent to ``KFold(n, n_folds=n // p)``
    which creates non-overlapping test sets.

    Due to the high number of iterations which grows combinatorically with the
    number of samples this cross validation method can be very costly. For
    large datasets one should favor KFold, StratifiedKFold or ShuffleSplit.

    Parameters
    ----------
    n : int
        Total number of elements in dataset.

    p : int
        Size of the test sets.

    indices : boolean, optional (default True)
        Return train/test split as arrays of indices, rather than a boolean
        mask array. Integer indices are required when dealing with sparse
        matrices, since those cannot be indexed by boolean masks.

    Examples
    --------
    >>> from sklearn import cross_validation
    >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
    >>> y = np.array([1, 2, 3, 4])
    >>> lpo = cross_validation.LeavePOut(4, 2)
    >>> len(lpo)
    6
    >>> print(lpo)
    sklearn.cross_validation.LeavePOut(n=4, p=2)
    >>> for train_index, test_index in lpo:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    TRAIN: [2 3] TEST: [0 1]
    TRAIN: [1 3] TEST: [0 2]
    TRAIN: [1 2] TEST: [0 3]
    TRAIN: [0 3] TEST: [1 2]
    TRAIN: [0 2] TEST: [1 3]
    TRAIN: [0 1] TEST: [2 3]
    """

    def __init__(self, n, p, indices=True):
        super(LeavePOut, self).__init__(n, indices)
        self.p = p

    def _iter_test_indices(self):
        for comb in combinations(range(self.n), self.p):
            yield np.array(comb)

    def __repr__(self):
        return '%s.%s(n=%i, p=%i)' % (
            self.__class__.__module__,
            self.__class__.__name__,
            self.n,
            self.p,
        )

    def __len__(self):
        return int(factorial(self.n) / factorial(self.n - self.p)
                   / factorial(self.p))


class _BaseKFold(with_metaclass(ABCMeta, _PartitionIterator)):
    """Base class to validate KFold approaches"""

    @abstractmethod
    def __init__(self, n, n_folds, indices, k=None):
        super(_BaseKFold, self).__init__(n, indices)
        if k is not None:  # pragma: no cover
            warnings.warn("The parameter k was renamed to n_folds and will be"
                          " removed in 0.15.", DeprecationWarning)
            n_folds = k

        if abs(n_folds - int(n_folds)) >= np.finfo('f').eps:
            raise ValueError("n_folds must be an integer")
        self.n_folds = n_folds = int(n_folds)

        if n_folds <= 1:
            raise ValueError(
                "k-fold cross validation requires at least one"
                " train / test split by setting n_folds=2 or more,"
                " got n_folds=%d.".format(n_folds))
        if n_folds > self.n:
            raise ValueError(
                ("Cannot have number of folds n_folds={0} greater"
                 "than the number of samples: {1}.").format(n_folds, n))


class KFold(_BaseKFold):
    """K-Folds cross validation iterator.

    Provides train/test indices to split data in train test sets. Split
    dataset into k consecutive folds (without shuffling).

    Each fold is then used a validation set once while the k - 1 remaining
    fold form the training set.

    Parameters
    ----------
    n : int
        Total number of elements.

    n_folds : int, default=3
        Number of folds. Must be at least 2.

    indices : boolean, optional (default True)
        Return train/test split as arrays of indices, rather than a boolean
        mask array. Integer indices are required when dealing with sparse
        matrices, since those cannot be indexed by boolean masks.

    shuffle : boolean, optional
        Whether to shuffle the data before splitting into batches.

    random_state : int or RandomState
            Pseudo number generator state used for random sampling.

    Examples
    --------
    >>> from sklearn import cross_validation
    >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
    >>> y = np.array([1, 2, 3, 4])
    >>> kf = cross_validation.KFold(4, n_folds=2)
    >>> len(kf)
    2
    >>> print(kf)
    sklearn.cross_validation.KFold(n=4, n_folds=2)
    >>> for train_index, test_index in kf:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    TRAIN: [2 3] TEST: [0 1]
    TRAIN: [0 1] TEST: [2 3]

    Notes
    -----
    The first n % n_folds folds have size n // n_folds + 1, other folds have
    size n // n_folds.

    See also
    --------
    StratifiedKFold: take label information into account to avoid building
    folds with imbalanced class distributions (for binary or multiclass
    classification tasks).
    """

    def __init__(self, n, n_folds=3, indices=True, shuffle=False,
                 random_state=None, k=None):
        super(KFold, self).__init__(n, n_folds, indices, k)
        random_state = check_random_state(random_state)
        self.idxs = np.arange(n)
        if shuffle:
            random_state.shuffle(self.idxs)

    def _iter_test_indices(self):
        n = self.n
        n_folds = self.n_folds
        fold_sizes = (n // n_folds) * np.ones(n_folds, dtype=np.int)
        fold_sizes[:n % n_folds] += 1
        current = 0
        for fold_size in fold_sizes:
            start, stop = current, current + fold_size
            yield self.idxs[start:stop]
            current = stop

    def __repr__(self):
        return '%s.%s(n=%i, n_folds=%i)' % (
            self.__class__.__module__,
            self.__class__.__name__,
            self.n,
            self.n_folds,
        )

    def __len__(self):
        return self.n_folds


class StratifiedKFold(_BaseKFold):
    """Stratified K-Folds cross validation iterator

    Provides train/test indices to split data in train test sets.

    This cross-validation object is a variation of KFold, which
    returns stratified folds. The folds are made by preserving
    the percentage of samples for each class.

    Parameters
    ----------
    y : array-like, [n_samples]
        Samples to split in K folds.

    n_folds : int, default=3
        Number of folds. Must be at least 2.

    indices : boolean, optional (default True)
        Return train/test split as arrays of indices, rather than a boolean
        mask array. Integer indices are required when dealing with sparse
        matrices, since those cannot be indexed by boolean masks.

    Examples
    --------
    >>> from sklearn import cross_validation
    >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
    >>> y = np.array([0, 0, 1, 1])
    >>> skf = cross_validation.StratifiedKFold(y, n_folds=2)
    >>> len(skf)
    2
    >>> print(skf)
    sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], n_folds=2)
    >>> for train_index, test_index in skf:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    TRAIN: [1 3] TEST: [0 2]
    TRAIN: [0 2] TEST: [1 3]

    Notes
    -----
    All the folds have size trunc(n_samples / n_folds), the last one has the
    complementary.
    """

    def __init__(self, y, n_folds=3, indices=True, k=None):
        super(StratifiedKFold, self).__init__(len(y), n_folds, indices, k)
        y = np.asarray(y)
        _, y_sorted = unique(y, return_inverse=True)
        min_labels = np.min(np.bincount(y_sorted))
        if self.n_folds > min_labels:
            warnings.warn(("The least populated class in y has only %d"
                          " members, which is too few. The minimum"
                          " number of labels for any class cannot"
                          " be less than n_folds=%d."
                          % (min_labels, self.n_folds)), Warning)
        self.y = y

    def _iter_test_indices(self):
        n_folds = self.n_folds
        idx = np.argsort(self.y)
        for i in range(n_folds):
            yield idx[i::n_folds]

    def __repr__(self):
        return '%s.%s(labels=%s, n_folds=%i)' % (
            self.__class__.__module__,
            self.__class__.__name__,
            self.y,
            self.n_folds,
        )

    def __len__(self):
        return self.n_folds


class LeaveOneLabelOut(_PartitionIterator):
    """Leave-One-Label_Out cross-validation iterator

    Provides train/test indices to split data according to a third-party
    provided label. This label information can be used to encode arbitrary
    domain specific stratifications of the samples as integers.

    For instance the labels could be the year of collection of the samples
    and thus allow for cross-validation against time-based splits.

    Parameters
    ----------
    labels : array-like of int with shape (n_samples,)
        Arbitrary domain-specific stratification of the data to be used
        to draw the splits.

    indices : boolean, optional (default True)
        Return train/test split as arrays of indices, rather than a boolean
        mask array. Integer indices are required when dealing with sparse
        matrices, since those cannot be indexed by boolean masks.

    Examples
    --------
    >>> from sklearn import cross_validation
    >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
    >>> y = np.array([1, 2, 1, 2])
    >>> labels = np.array([1, 1, 2, 2])
    >>> lol = cross_validation.LeaveOneLabelOut(labels)
    >>> len(lol)
    2
    >>> print(lol)
    sklearn.cross_validation.LeaveOneLabelOut(labels=[1 1 2 2])
    >>> for train_index, test_index in lol:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    ...    print(X_train, X_test, y_train, y_test)
    TRAIN: [2 3] TEST: [0 1]
    [[5 6]
     [7 8]] [[1 2]
     [3 4]] [1 2] [1 2]
    TRAIN: [0 1] TEST: [2 3]
    [[1 2]
     [3 4]] [[5 6]
     [7 8]] [1 2] [1 2]

    """

    def __init__(self, labels, indices=True):
        super(LeaveOneLabelOut, self).__init__(len(labels), indices)
        # We make a copy of labels to avoid side-effects during iteration
        self.labels = np.array(labels, copy=True)
        self.unique_labels = unique(labels)
        self.n_unique_labels = len(self.unique_labels)

    def _iter_test_masks(self):
        for i in self.unique_labels:
            yield self.labels == i

    def __repr__(self):
        return '%s.%s(labels=%s)' % (
            self.__class__.__module__,
            self.__class__.__name__,
            self.labels,
        )

    def __len__(self):
        return self.n_unique_labels


class LeavePLabelOut(_PartitionIterator):
    """Leave-P-Label_Out cross-validation iterator

    Provides train/test indices to split data according to a third-party
    provided label. This label information can be used to encode arbitrary
    domain specific stratifications of the samples as integers.

    For instance the labels could be the year of collection of the samples
    and thus allow for cross-validation against time-based splits.

    The difference between LeavePLabelOut and LeaveOneLabelOut is that
    the former builds the test sets with all the samples assigned to
    ``p`` different values of the labels while the latter uses samples
    all assigned the same labels.

    Parameters
    ----------
    labels : array-like of int with shape (n_samples,)
        Arbitrary domain-specific stratification of the data to be used
        to draw the splits.

    p : int
        Number of samples to leave out in the test split.

    indices : boolean, optional (default True)
        Return train/test split as arrays of indices, rather than a boolean
        mask array. Integer indices are required when dealing with sparse
        matrices, since those cannot be indexed by boolean masks.

    Examples
    --------
    >>> from sklearn import cross_validation
    >>> X = np.array([[1, 2], [3, 4], [5, 6]])
    >>> y = np.array([1, 2, 1])
    >>> labels = np.array([1, 2, 3])
    >>> lpl = cross_validation.LeavePLabelOut(labels, p=2)
    >>> len(lpl)
    3
    >>> print(lpl)
    sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2)
    >>> for train_index, test_index in lpl:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    ...    print(X_train, X_test, y_train, y_test)
    TRAIN: [2] TEST: [0 1]
    [[5 6]] [[1 2]
     [3 4]] [1] [1 2]
    TRAIN: [1] TEST: [0 2]
    [[3 4]] [[1 2]
     [5 6]] [2] [1 1]
    TRAIN: [0] TEST: [1 2]
    [[1 2]] [[3 4]
     [5 6]] [1] [2 1]
    """

    def __init__(self, labels, p, indices=True):
        # We make a copy of labels to avoid side-effects during iteration
        super(LeavePLabelOut, self).__init__(len(labels), indices)
        self.labels = np.array(labels, copy=True)
        self.unique_labels = unique(labels)
        self.n_unique_labels = len(self.unique_labels)
        self.p = p

    def _iter_test_masks(self):
        comb = combinations(range(self.n_unique_labels), self.p)
        for idx in comb:
            test_index = self._empty_mask()
            idx = np.array(idx)
            for l in self.unique_labels[idx]:
                test_index[self.labels == l] = True
            yield test_index

    def __repr__(self):
        return '%s.%s(labels=%s, p=%s)' % (
            self.__class__.__module__,
            self.__class__.__name__,
            self.labels,
            self.p,
        )

    def __len__(self):
        return int(factorial(self.n_unique_labels) /
                   factorial(self.n_unique_labels - self.p) /
                   factorial(self.p))


class Bootstrap(object):
    """Random sampling with replacement cross-validation iterator

    Provides train/test indices to split data in train test sets
    while resampling the input n_iter times: each time a new
    random split of the data is performed and then samples are drawn
    (with replacement) on each side of the split to build the training
    and test sets.

    Note: contrary to other cross-validation strategies, bootstrapping
    will allow some samples to occur several times in each splits. However
    a sample that occurs in the train split will never occur in the test
    split and vice-versa.

    If you want each sample to occur at most once you should probably
    use ShuffleSplit cross validation instead.

    Parameters
    ----------
    n : int
        Total number of elements in the dataset.

    n_iter : int (default is 3)
        Number of bootstrapping iterations

    train_size : int or float (default is 0.5)
        If int, number of samples to include in the training split
        (should be smaller than the total number of samples passed
        in the dataset).

        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the train split.

    test_size : int or float or None (default is None)
        If int, number of samples to include in the training set
        (should be smaller than the total number of samples passed
        in the dataset).

        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the test split.

        If None, n_test is set as the complement of n_train.

    random_state : int or RandomState
        Pseudo number generator state used for random sampling.

    Examples
    --------
    >>> from sklearn import cross_validation
    >>> bs = cross_validation.Bootstrap(9, random_state=0)
    >>> len(bs)
    3
    >>> print(bs)
    Bootstrap(9, n_iter=3, train_size=5, test_size=4, random_state=0)
    >>> for train_index, test_index in bs:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...
    TRAIN: [1 8 7 7 8] TEST: [0 3 0 5]
    TRAIN: [5 4 2 4 2] TEST: [6 7 1 0]
    TRAIN: [4 7 0 1 1] TEST: [5 3 6 5]

    See also
    --------
    ShuffleSplit: cross validation using random permutations.
    """

    # Static marker to be able to introspect the CV type
    indices = True

    def __init__(self, n, n_iter=3, train_size=.5, test_size=None,
                 random_state=None, n_bootstraps=None):
        self.n = n
        if n_bootstraps is not None:  # pragma: no cover
            warnings.warn("n_bootstraps was renamed to n_iter and will "
                          "be removed in 0.16.", DeprecationWarning)
            n_iter = n_bootstraps
        self.n_iter = n_iter
        if (isinstance(train_size, numbers.Real) and train_size >= 0.0
                and train_size <= 1.0):
            self.train_size = int(ceil(train_size * n))
        elif isinstance(train_size, numbers.Integral):
            self.train_size = train_size
        else:
            raise ValueError("Invalid value for train_size: %r" %
                             train_size)
        if self.train_size > n:
            raise ValueError("train_size=%d should not be larger than n=%d" %
                             (self.train_size, n))

        if isinstance(test_size, numbers.Real) and 0.0 <= test_size <= 1.0:
            self.test_size = int(ceil(test_size * n))
        elif isinstance(test_size, numbers.Integral):
            self.test_size = test_size
        elif test_size is None:
            self.test_size = self.n - self.train_size
        else:
            raise ValueError("Invalid value for test_size: %r" % test_size)
        if self.test_size > n:
            raise ValueError("test_size=%d should not be larger than n=%d" %
                             (self.test_size, n))

        self.random_state = random_state

    def __iter__(self):
        rng = check_random_state(self.random_state)
        for i in range(self.n_iter):
            # random partition
            permutation = rng.permutation(self.n)
            ind_train = permutation[:self.train_size]
            ind_test = permutation[self.train_size:self.train_size
                                   + self.test_size]

            # bootstrap in each split individually
            train = rng.randint(0, self.train_size,
                                size=(self.train_size,))
            test = rng.randint(0, self.test_size,
                               size=(self.test_size,))
            yield ind_train[train], ind_test[test]

    def __repr__(self):
        return ('%s(%d, n_iter=%d, train_size=%d, test_size=%d, '
                'random_state=%s)' % (
                    self.__class__.__name__,
                    self.n,
                    self.n_iter,
                    self.train_size,
                    self.test_size,
                    self.random_state,
                ))

    def __len__(self):
        return self.n_iter


class BaseShuffleSplit(with_metaclass(ABCMeta)):
    """Base class for ShuffleSplit and StratifiedShuffleSplit"""

    def __init__(self, n, n_iter=10, test_size=0.1, train_size=None,
                 indices=True, random_state=None, n_iterations=None):
        self.n = n
        self.n_iter = n_iter
        if n_iterations is not None:  # pragma: no cover
            warnings.warn("n_iterations was renamed to n_iter for consistency "
                          " and will be removed in 0.16.")
            self.n_iter = n_iterations
        self.test_size = test_size
        self.train_size = train_size
        self.random_state = random_state
        self.indices = indices
        self.n_train, self.n_test = _validate_shuffle_split(n,
                                                            test_size,
                                                            train_size)

    def __iter__(self):
        if self.indices:
            for train, test in self._iter_indices():
                yield train, test
            return
        for train, test in self._iter_indices():
            train_m = np.zeros(self.n, dtype=bool)
            test_m = np.zeros(self.n, dtype=bool)
            train_m[train] = True
            test_m[test] = True
            yield train_m, test_m

    @abstractmethod
    def _iter_indices(self):
        """Generate (train, test) indices"""


class ShuffleSplit(BaseShuffleSplit):
    """Random permutation cross-validation iterator.

    Yields indices to split data into training and test sets.

    Note: contrary to other cross-validation strategies, random splits
    do not guarantee that all folds will be different, although this is
    still very likely for sizeable datasets.

    Parameters
    ----------
    n : int
        Total number of elements in the dataset.

    n_iter : int (default 10)
        Number of re-shuffling & splitting iterations.

    test_size : float (default 0.1), int, or None
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the test split. If
        int, represents the absolute number of test samples. If None,
        the value is automatically set to the complement of the train size.

    train_size : float, int, or None (default is None)
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the train split. If
        int, represents the absolute number of train samples. If None,
        the value is automatically set to the complement of the test size.

    indices : boolean, optional (default True)
        Return train/test split as arrays of indices, rather than a boolean
        mask array. Integer indices are required when dealing with sparse
        matrices, since those cannot be indexed by boolean masks.

    random_state : int or RandomState
        Pseudo-random number generator state used for random sampling.

    Examples
    --------
    >>> from sklearn import cross_validation
    >>> rs = cross_validation.ShuffleSplit(4, n_iter=3,
    ...     test_size=.25, random_state=0)
    >>> len(rs)
    3
    >>> print(rs)
    ... # doctest: +ELLIPSIS
    ShuffleSplit(4, n_iter=3, test_size=0.25, indices=True, ...)
    >>> for train_index, test_index in rs:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...
    TRAIN: [3 1 0] TEST: [2]
    TRAIN: [2 1 3] TEST: [0]
    TRAIN: [0 2 1] TEST: [3]

    >>> rs = cross_validation.ShuffleSplit(4, n_iter=3,
    ...     train_size=0.5, test_size=.25, random_state=0)
    >>> for train_index, test_index in rs:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...
    TRAIN: [3 1] TEST: [2]
    TRAIN: [2 1] TEST: [0]
    TRAIN: [0 2] TEST: [3]

    See also
    --------
    Bootstrap: cross-validation using re-sampling with replacement.
    """

    def _iter_indices(self):
        rng = check_random_state(self.random_state)
        for i in range(self.n_iter):
            # random partition
            permutation = rng.permutation(self.n)
            ind_test = permutation[:self.n_test]
            ind_train = permutation[self.n_test:self.n_test + self.n_train]
            yield ind_train, ind_test

    def __repr__(self):
        return ('%s(%d, n_iter=%d, test_size=%s, indices=%s, '
                'random_state=%s)' % (
                    self.__class__.__name__,
                    self.n,
                    self.n_iter,
                    str(self.test_size),
                    self.indices,
                    self.random_state,
                ))

    def __len__(self):
        return self.n_iter


def _validate_shuffle_split(n, test_size, train_size):
    if test_size is None and train_size is None:
        raise ValueError(
            'test_size and train_size can not both be None')

    if test_size is not None:
        if np.asarray(test_size).dtype.kind == 'f':
            if test_size >= 1.:
                raise ValueError(
                    'test_size=%f should be smaller '
                    'than 1.0 or be an integer' % test_size)
        elif np.asarray(test_size).dtype.kind == 'i':
            if test_size >= n:
                raise ValueError(
                    'test_size=%d should be smaller '
                    'than the number of samples %d' % (test_size, n))
        else:
            raise ValueError("Invalid value for test_size: %r" % test_size)

    if train_size is not None:
        if np.asarray(train_size).dtype.kind == 'f':
            if train_size >= 1.:
                raise ValueError("train_size=%f should be smaller "
                                 "than 1.0 or be an integer" % train_size)
            elif np.asarray(test_size).dtype.kind == 'f' and \
                    train_size + test_size > 1.:
                raise ValueError('The sum of test_size and train_size = %f, '
                                 'should be smaller than 1.0. Reduce '
                                 'test_size and/or train_size.' %
                                 (train_size + test_size))
        elif np.asarray(train_size).dtype.kind == 'i':
            if train_size >= n:
                raise ValueError("train_size=%d should be smaller "
                                 "than the number of samples %d" %
                                 (train_size, n))
        else:
            raise ValueError("Invalid value for train_size: %r" % train_size)

    if np.asarray(test_size).dtype.kind == 'f':
        n_test = ceil(test_size * n)
    elif np.asarray(test_size).dtype.kind == 'i':
        n_test = float(test_size)

    if train_size is None:
        n_train = n - n_test
    else:
        if np.asarray(train_size).dtype.kind == 'f':
            n_train = floor(train_size * n)
        else:
            n_train = float(train_size)

    if test_size is None:
        n_test = n - n_train

    if n_train + n_test > n:
        raise ValueError('The sum of train_size and test_size = %d, '
                         'should be smaller than the number of '
                         'samples %d. Reduce test_size and/or '
                         'train_size.' % (n_train + n_test, n))

    return int(n_train), int(n_test)


class StratifiedShuffleSplit(BaseShuffleSplit):
    """Stratified ShuffleSplit cross validation iterator

    Provides train/test indices to split data in train test sets.

    This cross-validation object is a merge of StratifiedKFold and
    ShuffleSplit, which returns stratified randomized folds. The folds
    are made by preserving the percentage of samples for each class.

    Note: like the ShuffleSplit strategy, stratified random splits
    do not guarantee that all folds will be different, although this is
    still very likely for sizeable datasets.

    Parameters
    ----------
    y : array, [n_samples]
        Labels of samples.

    n_iter : int (default 10)
        Number of re-shuffling & splitting iterations.

    test_size : float (default 0.1), int, or None
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the test split. If
        int, represents the absolute number of test samples. If None,
        the value is automatically set to the complement of the train size.

    train_size : float, int, or None (default is None)
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the train split. If
        int, represents the absolute number of train samples. If None,
        the value is automatically set to the complement of the test size.

    indices : boolean, optional (default True)
        Return train/test split as arrays of indices, rather than a boolean
        mask array. Integer indices are required when dealing with sparse
        matrices, since those cannot be indexed by boolean masks.

    random_state : int or RandomState
        Pseudo-random number generator state used for random sampling.

    Examples
    --------
    >>> from sklearn.cross_validation import StratifiedShuffleSplit
    >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
    >>> y = np.array([0, 0, 1, 1])
    >>> sss = StratifiedShuffleSplit(y, 3, test_size=0.5, random_state=0)
    >>> len(sss)
    3
    >>> print(sss)       # doctest: +ELLIPSIS
    StratifiedShuffleSplit(labels=[0 0 1 1], n_iter=3, ...)
    >>> for train_index, test_index in sss:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    TRAIN: [1 2] TEST: [3 0]
    TRAIN: [0 2] TEST: [1 3]
    TRAIN: [0 2] TEST: [3 1]
    """

    def __init__(self, y, n_iter=10, test_size=0.1, train_size=None,
                 indices=True, random_state=None, n_iterations=None):

        super(StratifiedShuffleSplit, self).__init__(
            len(y), n_iter, test_size, train_size, indices, random_state,
            n_iterations)
        self.y = np.array(y)
        self.classes, self.y_indices = unique(y, return_inverse=True)
        n_cls = self.classes.shape[0]

        if np.min(np.bincount(self.y_indices)) < 2:
            raise ValueError("The least populated class in y has only 1"
                             " member, which is too few. The minimum"
                             " number of labels for any class cannot"
                             " be less than 2.")

        if self.n_train < n_cls:
            raise ValueError('The train_size = %d should be greater or '
                             'equal to the number of classes = %d' %
                             (self.n_train, n_cls))
        if self.n_test < n_cls:
            raise ValueError('The test_size = %d should be greater or '
                             'equal to the number of classes = %d' %
                             (self.n_test, n_cls))

    def _iter_indices(self):
        rng = check_random_state(self.random_state)
        cls_count = np.bincount(self.y_indices)
        p_i = cls_count / float(self.n)
        n_i = np.round(self.n_train * p_i).astype(int)
        t_i = np.minimum(cls_count - n_i,
                         np.round(self.n_test * p_i).astype(int))

        for n in range(self.n_iter):
            train = []
            test = []

            for i, cls in enumerate(self.classes):
                permutation = rng.permutation(n_i[i] + t_i[i])
                cls_i = np.where((self.y == cls))[0][permutation]

                train.extend(cls_i[:n_i[i]])
                test.extend(cls_i[n_i[i]:n_i[i] + t_i[i]])

            train = rng.permutation(train)
            test = rng.permutation(test)

            yield train, test

    def __repr__(self):
        return ('%s(labels=%s, n_iter=%d, test_size=%s, indices=%s, '
                'random_state=%s)' % (
                    self.__class__.__name__,
                    self.y,
                    self.n_iter,
                    str(self.test_size),
                    self.indices,
                    self.random_state,
                ))

    def __len__(self):
        return self.n_iter


##############################################################################

def _cross_val_score(estimator, X, y, scorer, train, test, verbose,
                     fit_params):
    """Inner loop for cross validation"""
    n_samples = X.shape[0] if sp.issparse(X) else len(X)
    fit_params = dict([(k, np.asarray(v)[train]
                       if hasattr(v, '__len__') and len(v) == n_samples else v)
                       for k, v in fit_params.items()])
    if not hasattr(X, "shape"):
        if getattr(estimator, "_pairwise", False):
            raise ValueError("Precomputed kernels or affinity matrices have "
                             "to be passed as arrays or sparse matrices.")
        X_train = [X[idx] for idx in train]
        X_test = [X[idx] for idx in test]
    else:
        if getattr(estimator, "_pairwise", False):
            # X is a precomputed square kernel matrix
            if X.shape[0] != X.shape[1]:
                raise ValueError("X should be a square kernel matrix")
            X_train = X[np.ix_(train, train)]
            X_test = X[np.ix_(test, train)]
        else:
            X_train = X[safe_mask(X, train)]
            X_test = X[safe_mask(X, test)]

    if y is None:
        y_train = None
        y_test = None
    else:
        y_train = y[train]
        y_test = y[test]
    estimator.fit(X_train, y_train, **fit_params)
    if scorer is None:
        score = estimator.score(X_test, y_test)
    else:
        score = scorer(estimator, X_test, y_test)
        if not isinstance(score, numbers.Number):
            raise ValueError("scoring must return a number, got %s (%s)"
                             " instead." % (str(score), type(score)))
    if verbose > 1:
        print("score: %f" % score)
    return score


def cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1,
                    verbose=0, fit_params=None, score_func=None,
                    pre_dispatch='2*n_jobs'):
    """Evaluate a score by cross-validation

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : array-like of shape at least 2D
        The data to fit.

    y : array-like, optional, default: None
        The target variable to try to predict in the case of
        supervised learning.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    cv : cross-validation generator, optional, default: None
        A cross-validation generator. If None, a 3-fold cross
        validation is used or 3-fold stratified cross-validation
        when y is supplied and estimator is a classifier.

    n_jobs : integer, optional
        The number of CPUs to use to do the computation. -1 means
        'all CPUs'.

    verbose : integer, optional
        The verbosity level.

    fit_params : dict, optional
        Parameters to pass to the fit method of the estimator.

    pre_dispatch : int, or string, optional
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

            - None, in which case all the jobs are immediately
              created and spawned. Use this for lightweight and
              fast-running jobs, to avoid delays due to on-demand
              spawning of the jobs

            - An int, giving the exact number of total jobs that are
              spawned

            - A string, giving an expression as a function of n_jobs,
              as in '2*n_jobs'

    Returns
    -------
    scores : array of float, shape=(len(list(cv)),)
        Array of scores of the estimator for each run of the cross validation.
    """
    X, y = check_arrays(X, y, sparse_format='csr', allow_lists=True)
    cv = check_cv(cv, X, y, classifier=is_classifier(estimator))
    scorer = _deprecate_loss_and_score_funcs(
        loss_func=None,
        score_func=score_func,
        scoring=scoring
    )
    if scorer is None and not hasattr(estimator, 'score'):
        raise TypeError(
            "If no scoring is specified, the estimator passed "
            "should have a 'score' method. The estimator %s "
            "does not." % estimator)
    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    fit_params = fit_params if fit_params is not None else {}
    parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
                        pre_dispatch=pre_dispatch)
    scores = parallel(
        delayed(_cross_val_score)(clone(estimator), X, y, scorer, train, test,
                                  verbose, fit_params)
        for train, test in cv)
    return np.array(scores)


def _permutation_test_score(estimator, X, y, cv, scorer):
    """Auxiliary function for permutation_test_score"""
    avg_score = []
    for train, test in cv:
        estimator.fit(X[train], y[train])
        avg_score.append(scorer(estimator, X[test], y[test]))
    return np.mean(avg_score)


def _shuffle(y, labels, random_state):
    """Return a shuffled copy of y eventually shuffle among same labels."""
    if labels is None:
        ind = random_state.permutation(len(y))
    else:
        ind = np.arange(len(labels))
        for label in unique(labels):
            this_mask = (labels == label)
            ind[this_mask] = random_state.permutation(ind[this_mask])
    return y[ind]


def check_cv(cv, X=None, y=None, classifier=False):
    """Input checker utility for building a CV in a user friendly way.

    Parameters
    ----------
    cv : int, a cv generator instance, or None
        The input specifying which cv generator to use. It can be an
        integer, in which case it is the number of folds in a KFold,
        None, in which case 3 fold is used, or another object, that
        will then be used as a cv generator.

    X : array-like
        The data the cross-val object will be applied on.

    y : array-like
        The target variable for a supervised learning problem.

    classifier : boolean optional
        Whether the task is a classification task, in which case
        stratified KFold will be used.

    Returns
    -------
    checked_cv: a cross-validation generator instance.
        The return value is guaranteed to be a cv generator instance, whatever
        the input type.
    """
    is_sparse = sp.issparse(X)
    needs_indices = is_sparse or not hasattr(X, "shape")
    if cv is None:
        cv = 3
    if isinstance(cv, numbers.Integral):
        if classifier:
            cv = StratifiedKFold(y, cv, indices=needs_indices)
        else:
            if not is_sparse:
                n_samples = len(X)
            else:
                n_samples = X.shape[0]
            cv = KFold(n_samples, cv, indices=needs_indices)
    if needs_indices and not getattr(cv, "indices", True):
        raise ValueError("Sparse data and lists require indices-based cross"
                         " validation generator, got: %r", cv)
    return cv


def permutation_test_score(estimator, X, y, score_func=None, cv=None,
                           n_permutations=100, n_jobs=1, labels=None,
                           random_state=0, verbose=0, scoring=None):
    """Evaluate the significance of a cross-validated score with permutations

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : array-like of shape at least 2D
        The data to fit.

    y : array-like
        The target variable to try to predict in the case of
        supervised learning.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    cv : integer or cross-validation generator, optional
        If an integer is passed, it is the number of fold (default 3).
        Specific cross-validation objects can be passed, see
        sklearn.cross_validation module for the list of possible objects.

    n_jobs : integer, optional
        The number of CPUs to use to do the computation. -1 means
        'all CPUs'.

    labels : array-like of shape [n_samples] (optional)
        Labels constrain the permutation among groups of samples with
        a same label.

    random_state : RandomState or an int seed (0 by default)
        A random number generator instance to define the state of the
        random permutations generator.

    verbose : integer, optional
        The verbosity level.

    Returns
    -------
    score : float
        The true score without permuting targets.

    permutation_scores : array, shape = [n_permutations]
        The scores obtained for each permutations.

    pvalue : float
        The returned value equals p-value if `score_func` returns bigger
        numbers for better scores (e.g., accuracy_score). If `score_func` is
        rather a loss function (i.e. when lower is better such as with
        `mean_squared_error`) then this is actually the complement of the
        p-value:  1 - p-value.

    Notes
    -----
    This function implements Test 1 in:

        Ojala and Garriga. Permutation Tests for Studying Classifier
        Performance.  The Journal of Machine Learning Research (2010)
        vol. 11

    """
    X, y = check_arrays(X, y, sparse_format='csr')
    cv = check_cv(cv, X, y, classifier=is_classifier(estimator))
    scorer = _deprecate_loss_and_score_funcs(
        loss_func=None,
        score_func=score_func,
        scoring=scoring
    )
    random_state = check_random_state(random_state)

    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    score = _permutation_test_score(clone(estimator), X, y, cv, scorer)
    permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)(
        delayed(_permutation_test_score)(
            clone(estimator), X, _shuffle(y, labels, random_state), cv,
            scorer)
        for _ in range(n_permutations))
    permutation_scores = np.array(permutation_scores)
    pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1)
    return score, permutation_scores, pvalue


permutation_test_score.__test__ = False  # to avoid a pb with nosetests


def train_test_split(*arrays, **options):
    """Split arrays or matrices into random train and test subsets

    Quick utility that wraps calls to ``check_arrays`` and
    ``next(iter(ShuffleSplit(n_samples)))`` and application to input
    data into a single call for splitting (and optionally subsampling)
    data in a oneliner.

    Parameters
    ----------
    *arrays : sequence of arrays or scipy.sparse matrices with same shape[0]
        Python lists or tuples occurring in arrays are converted to 1D numpy
        arrays.

    test_size : float, int, or None (default is None)
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the test split. If
        int, represents the absolute number of test samples. If None,
        the value is automatically set to the complement of the train size.
        If train size is also None, test size is set to 0.25.

    train_size : float, int, or None (default is None)
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the train split. If
        int, represents the absolute number of train samples. If None,
        the value is automatically set to the complement of the test size.

    random_state : int or RandomState
        Pseudo-random number generator state used for random sampling.

    dtype : a numpy dtype instance, None by default
        Enforce a specific dtype.

    Returns
    -------
    splitting : list of arrays, length=2 * len(arrays)
        List containing train-test split of input array.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.cross_validation import train_test_split
    >>> a, b = np.arange(10).reshape((5, 2)), range(5)
    >>> a
    array([[0, 1],
           [2, 3],
           [4, 5],
           [6, 7],
           [8, 9]])
    >>> list(b)
    [0, 1, 2, 3, 4]

    >>> a_train, a_test, b_train, b_test = train_test_split(
    ...     a, b, test_size=0.33, random_state=42)
    ...
    >>> a_train
    array([[4, 5],
           [0, 1],
           [6, 7]])
    >>> b_train
    array([2, 0, 3])
    >>> a_test
    array([[2, 3],
           [8, 9]])
    >>> b_test
    array([1, 4])

    """
    n_arrays = len(arrays)
    if n_arrays == 0:
        raise ValueError("At least one array required as input")

    test_size = options.pop('test_size', None)
    train_size = options.pop('train_size', None)
    random_state = options.pop('random_state', None)
    options['sparse_format'] = 'csr'

    if test_size is None and train_size is None:
        test_size = 0.25

    arrays = check_arrays(*arrays, **options)
    n_samples = arrays[0].shape[0]
    cv = ShuffleSplit(n_samples, test_size=test_size,
                      train_size=train_size,
                      random_state=random_state,
                      indices=True)
    train, test = next(iter(cv))
    splitted = []
    for a in arrays:
        splitted.append(a[train])
        splitted.append(a[test])
    return splitted

train_test_split.__test__ = False  # to avoid a pb with nosetests