This file is indexed.

/usr/share/pyshared/sklearn/cluster/hierarchical.py is in python-sklearn 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
"""Hierarchical Agglomerative Clustering

These routines perform some hierarchical agglomerative clustering of some
input data. Currently, only Ward's algorithm is implemented.

Authors : Vincent Michel, Bertrand Thirion, Alexandre Gramfort,
          Gael Varoquaux
License: BSD 3 clause
"""
from heapq import heapify, heappop, heappush, heappushpop
import warnings

import numpy as np
from scipy import sparse
from scipy.cluster import hierarchy

from ..base import BaseEstimator, ClusterMixin
from ..externals.joblib import Memory
from ..externals import six
from ..metrics import euclidean_distances
from ..utils import array2d
from ..utils.sparsetools import connected_components

from . import _hierarchical
from ._feature_agglomeration import AgglomerationTransform


###############################################################################
# Ward's algorithm

def ward_tree(X, connectivity=None, n_components=None, copy=True,
              n_clusters=None):
    """Ward clustering based on a Feature matrix.

    Recursively merges the pair of clusters that minimally increases
    within-cluster variance.

    The inertia matrix uses a Heapq-based representation.

    This is the structured version, that takes into account some topological
    structure between samples.

    Parameters
    ----------
    X : array of shape (n_samples, n_features)
        feature matrix  representing n_samples samples to be clustered

    connectivity : sparse matrix.
        connectivity matrix. Defines for each sample the neighboring samples
        following a given structure of the data. The matrix is assumed to
        be symmetric and only the upper triangular half is used.
        Default is None, i.e, the Ward algorithm is unstructured.

    n_components : int (optional)
        Number of connected components. If None the number of connected
        components is estimated from the connectivity matrix.

    copy : bool (optional)
        Make a copy of connectivity or work inplace. If connectivity
        is not of LIL type there will be a copy in any case.

    n_clusters : int (optional)
        Stop early the construction of the tree at n_clusters. This is
        useful to decrease computation time if the number of clusters is
        not small compared to the number of samples. In this case, the
        complete tree is not computed, thus the 'children' output is of
        limited use, and the 'parents' output should rather be used.
        This option is valid only when specifying a connectivity matrix.

    Returns
    -------
    children : 2D array, shape (n_nodes, 2)
        The children of each non-leaf node. Values less than `n_samples` refer
        to leaves of the tree. A greater value `i` indicates a node with
        children `children[i - n_samples]`.

    n_components : int
        The number of connected components in the graph.

    n_leaves : int
        The number of leaves in the tree

    parents : 1D array, shape (n_nodes, ) or None
        The parent of each node. Only returned when a connectivity matrix
        is specified, elsewhere 'None' is returned.
    """
    X = np.asarray(X)
    if X.ndim == 1:
        X = np.reshape(X, (-1, 1))
    n_samples, n_features = X.shape

    if connectivity is None:
        if n_clusters is not None:
            warnings.warn('Early stopping is implemented only for '
                          'structured Ward clustering (i.e. with '
                          'explicit connectivity.', stacklevel=2)
        out = hierarchy.ward(X)
        children_ = out[:, :2].astype(np.intp)
        return children_, 1, n_samples, None

    # Compute the number of nodes
    if n_components is None:
        n_components, labels = connected_components(connectivity)

    # Convert connectivity matrix to LIL with a copy if needed
    if sparse.isspmatrix_lil(connectivity) and copy:
        connectivity = connectivity.copy()
    elif not sparse.isspmatrix(connectivity):
        connectivity = sparse.lil_matrix(connectivity)
    else:
        connectivity = connectivity.tolil()

    if n_components > 1:
        warnings.warn("the number of connected components of the "
                      "connectivity matrix is %d > 1. Completing it to avoid "
                      "stopping the tree early." % n_components)
        connectivity = _fix_connectivity(X, connectivity, n_components, labels)
        n_components = 1

    if n_clusters is None:
        n_nodes = 2 * n_samples - n_components
    else:
        assert n_clusters <= n_samples
        n_nodes = 2 * n_samples - n_clusters

    if (connectivity.shape[0] != n_samples
            or connectivity.shape[1] != n_samples):
        raise ValueError('Wrong shape for connectivity matrix: %s '
                         'when X is %s' % (connectivity.shape, X.shape))

    # create inertia matrix
    coord_row = []
    coord_col = []
    A = []
    for ind, row in enumerate(connectivity.rows):
        A.append(row)
        # We keep only the upper triangular for the moments
        # Generator expressions are faster than arrays on the following
        row = [i for i in row if i < ind]
        coord_row.extend(len(row) * [ind, ])
        coord_col.extend(row)

    coord_row = np.array(coord_row, dtype=np.intp, order='C')
    coord_col = np.array(coord_col, dtype=np.intp, order='C')

    # build moments as a list
    moments_1 = np.zeros(n_nodes, order='C')
    moments_1[:n_samples] = 1
    moments_2 = np.zeros((n_nodes, n_features), order='C')
    moments_2[:n_samples] = X
    inertia = np.empty(len(coord_row), dtype=np.float, order='C')
    _hierarchical.compute_ward_dist(moments_1, moments_2, coord_row, coord_col,
                                    inertia)
    inertia = list(six.moves.zip(inertia, coord_row, coord_col))
    heapify(inertia)

    # prepare the main fields
    parent = np.arange(n_nodes, dtype=np.intp)
    heights = np.zeros(n_nodes)
    used_node = np.ones(n_nodes, dtype=bool)
    children = []

    not_visited = np.empty(n_nodes, dtype=np.int8, order='C')

    # recursive merge loop
    for k in range(n_samples, n_nodes):
        # identify the merge
        while True:
            inert, i, j = heappop(inertia)
            if used_node[i] and used_node[j]:
                break
        parent[i], parent[j], heights[k] = k, k, inert
        children.append([i, j])
        used_node[i] = used_node[j] = False

        # update the moments
        moments_1[k] = moments_1[i] + moments_1[j]
        moments_2[k] = moments_2[i] + moments_2[j]

        # update the structure matrix A and the inertia matrix
        coord_col = []
        not_visited.fill(1)
        not_visited[k] = 0
        _hierarchical._get_parents(A[i], coord_col, parent, not_visited)
        _hierarchical._get_parents(A[j], coord_col, parent, not_visited)
        # List comprehension is faster than a for loop
        [A[l].append(k) for l in coord_col]
        A.append(coord_col)
        coord_col = np.array(coord_col, dtype=np.intp, order='C')
        coord_row = np.empty(coord_col.shape, dtype=np.intp, order='C')
        coord_row.fill(k)
        n_additions = len(coord_row)
        ini = np.empty(n_additions, dtype=np.float, order='C')

        _hierarchical.compute_ward_dist(moments_1, moments_2,
                                        coord_row, coord_col, ini)
        # List comprehension is faster than a for loop
        [heappush(inertia, (ini[idx], k, coord_col[idx]))
            for idx in range(n_additions)]

    # Separate leaves in children (empty lists up to now)
    n_leaves = n_samples
    children = np.array(children)  # return numpy array for efficient caching

    return children, n_components, n_leaves, parent


###############################################################################
# For non fully-connected graphs

def _fix_connectivity(X, connectivity, n_components, labels):
    """
    Warning: modifies connectivity in place
    """
    for i in range(n_components):
        idx_i = np.where(labels == i)[0]
        Xi = X[idx_i]
        for j in range(i):
            idx_j = np.where(labels == j)[0]
            Xj = X[idx_j]
            D = euclidean_distances(Xi, Xj)
            ii, jj = np.where(D == np.min(D))
            ii = ii[0]
            jj = jj[0]
            connectivity[idx_i[ii], idx_j[jj]] = True
            connectivity[idx_j[jj], idx_i[ii]] = True
    return connectivity

###############################################################################
# Functions for cutting  hierarchical clustering tree


def _hc_cut(n_clusters, children, n_leaves):
    """Function cutting the ward tree for a given number of clusters.

    Parameters
    ----------
    n_clusters : int or ndarray
        The number of clusters to form.

    children : list of pairs. Length of n_nodes
        The children of each non-leaf node. Values less than `n_samples` refer
        to leaves of the tree. A greater value `i` indicates a node with
        children `children[i - n_samples]`.

    n_leaves : int
        Number of leaves of the tree.

    Returns
    -------
    labels : array [n_samples]
        cluster labels for each point

    """
    if n_clusters > n_leaves:
        raise ValueError('Cannot extract more clusters than samples: '
                         '%s clusters where given for a tree with %s leaves.'
                         % (n_clusters, n_leaves))
    # In this function, we store nodes as a heap to avoid recomputing
    # the max of the nodes: the first element is always the smallest
    # We use negated indices as heaps work on smallest elements, and we
    # are interested in largest elements
    # children[-1] is the root of the tree
    nodes = [-(max(children[-1]) + 1)]
    for i in range(n_clusters - 1):
        # As we have a heap, nodes[0] is the smallest element
        these_children = children[-nodes[0] - n_leaves]
        # Insert the 2 children and remove the largest node
        heappush(nodes, -these_children[0])
        heappushpop(nodes, -these_children[1])
    label = np.zeros(n_leaves, dtype=np.intp)
    for i, node in enumerate(nodes):
        label[_hierarchical._hc_get_descendent(-node, children, n_leaves)] = i
    return label


###############################################################################
# Class for Ward hierarchical clustering

class Ward(BaseEstimator, ClusterMixin):
    """Ward hierarchical clustering: constructs a tree and cuts it.

    Recursively merges the pair of clusters that minimally increases
    within-cluster variance.

    Parameters
    ----------
    n_clusters : int, default=2
        The number of clusters to find.

    connectivity : sparse matrix (optional)
        Connectivity matrix. Defines for each sample the neighboring
        samples following a given structure of the data.
        Default is None, i.e, the hierarchical clustering algorithm is
        unstructured.

    memory : Instance of joblib.Memory or string (optional)
        Used to cache the output of the computation of the tree.
        By default, no caching is done. If a string is given, it is the
        path to the caching directory.

    copy : bool, default=True
        Copy the connectivity matrix or work in-place.

    n_components : int (optional)
        The number of connected components in the graph defined by the \
        connectivity matrix. If not set, it is estimated.

    compute_full_tree: bool or 'auto' (optional)
        Stop early the construction of the tree at n_clusters. This is
        useful to decrease computation time if the number of clusters is
        not small compared to the number of samples. This option is
        useful only when specifying a connectivity matrix. Note also that
        when varying the number of cluster and using caching, it may
        be advantageous to compute the full tree.


    Attributes
    ----------
    `children_` : array-like, shape = [n_nodes, 2]
        The children of each non-leaf node. Values less than `n_samples` refer
        to leaves of the tree. A greater value `i` indicates a node with
        children `children_[i - n_samples]`.

    `labels_` : array [n_samples]
        cluster labels for each point

    `n_leaves_` : int
        Number of leaves in the hierarchical tree.

    `n_components_` : int
        The estimated number of connected components in the graph.

    """

    def __init__(self, n_clusters=2, memory=Memory(cachedir=None, verbose=0),
                 connectivity=None, copy=True, n_components=None,
                 compute_full_tree='auto'):
        self.n_clusters = n_clusters
        self.memory = memory
        self.copy = copy
        self.n_components = n_components
        self.connectivity = connectivity
        self.compute_full_tree = compute_full_tree

    def fit(self, X):
        """Fit the hierarchical clustering on the data

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            The samples a.k.a. observations.

        Returns
        -------
        self
        """
        memory = self.memory
        X = array2d(X)
        if isinstance(memory, six.string_types):
            memory = Memory(cachedir=memory, verbose=0)

        if not self.connectivity is None:
            if not sparse.issparse(self.connectivity):
                raise TypeError("`connectivity` should be a sparse matrix or "
                                "None, got: %r" % type(self.connectivity))

            if (self.connectivity.shape[0] != X.shape[0] or
                    self.connectivity.shape[1] != X.shape[0]):
                raise ValueError("`connectivity` does not have shape "
                                 "(n_samples, n_samples)")

        n_samples = len(X)
        compute_full_tree = self.compute_full_tree
        if self.connectivity is None:
            compute_full_tree = True
        if compute_full_tree == 'auto':
            # Early stopping is likely to give a speed up only for
            # a large number of clusters. The actual threshold
            # implemented here is heuristic
            compute_full_tree = self.n_clusters > max(100, .02 * n_samples)
        n_clusters = self.n_clusters
        if compute_full_tree:
            n_clusters = None

        # Construct the tree
        self.children_, self.n_components_, self.n_leaves_, parents = \
            memory.cache(ward_tree)(X, self.connectivity,
                                    n_components=self.n_components,
                                    copy=self.copy, n_clusters=n_clusters)
        # Cut the tree
        if compute_full_tree:
            self.labels_ = _hc_cut(self.n_clusters, self.children_,
                                   self.n_leaves_)
        else:
            labels = _hierarchical.hc_get_heads(parents, copy=False)
            # copy to avoid holding a reference on the original array
            labels = np.copy(labels[:n_samples])
            # Reasign cluster numbers
            self.labels_ = np.searchsorted(np.unique(labels), labels)
        return self


###############################################################################
# Ward-based feature agglomeration

class WardAgglomeration(AgglomerationTransform, Ward):
    """Feature agglomeration based on Ward hierarchical clustering

    Parameters
    ----------
    n_clusters : int, default=2
        The number of clusters.

    connectivity : sparse matrix (optional)
        connectivity matrix. Defines for each feature the neighboring
        features following a given structure of the data.
        Default is None, i.e, the hierarchical agglomeration algorithm is
        unstructured.

    memory : Instance of joblib.Memory or string (optional)
        Used to cache the output of the computation of the tree.
        By default, no caching is done. If a string is given, it is the
        path to the caching directory.

    copy : bool, default=True
        Copy the connectivity matrix or work in-place.

    n_components : int (optional)
        The number of connected components in the graph defined by the
        connectivity matrix. If not set, it is estimated.

    compute_full_tree: bool or 'auto' (optional)
        Stop early the construction of the tree at n_clusters. This is
        useful to decrease computation time if the number of clusters is
        not small compared to the number of samples. This option is
        useful only when specifying a connectivity matrix. Note also that
        when varying the number of cluster and using caching, it may
        be advantageous to compute the full tree.


    Attributes
    ----------
    `children_` : array-like, shape = [n_nodes, 2]
        The children of each non-leaf node. Values less than `n_samples` refer
        to leaves of the tree. A greater value `i` indicates a node with
        children `children_[i - n_samples]`.

    `labels_` : array [n_features]
        cluster labels for each feature

    `n_leaves_` : int
        Number of leaves in the hierarchical tree.

    `n_components_` : int
        The estimated number of connected components in the graph.
    """

    def fit(self, X, y=None, **params):
        """Fit the hierarchical clustering on the data

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            The data

        Returns
        -------
        self
        """
        return Ward.fit(self, X.T, **params)