/usr/share/pyshared/sklearn/cluster/hierarchical.py is in python-sklearn 0.14.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 | """Hierarchical Agglomerative Clustering
These routines perform some hierarchical agglomerative clustering of some
input data. Currently, only Ward's algorithm is implemented.
Authors : Vincent Michel, Bertrand Thirion, Alexandre Gramfort,
Gael Varoquaux
License: BSD 3 clause
"""
from heapq import heapify, heappop, heappush, heappushpop
import warnings
import numpy as np
from scipy import sparse
from scipy.cluster import hierarchy
from ..base import BaseEstimator, ClusterMixin
from ..externals.joblib import Memory
from ..externals import six
from ..metrics import euclidean_distances
from ..utils import array2d
from ..utils.sparsetools import connected_components
from . import _hierarchical
from ._feature_agglomeration import AgglomerationTransform
###############################################################################
# Ward's algorithm
def ward_tree(X, connectivity=None, n_components=None, copy=True,
n_clusters=None):
"""Ward clustering based on a Feature matrix.
Recursively merges the pair of clusters that minimally increases
within-cluster variance.
The inertia matrix uses a Heapq-based representation.
This is the structured version, that takes into account some topological
structure between samples.
Parameters
----------
X : array of shape (n_samples, n_features)
feature matrix representing n_samples samples to be clustered
connectivity : sparse matrix.
connectivity matrix. Defines for each sample the neighboring samples
following a given structure of the data. The matrix is assumed to
be symmetric and only the upper triangular half is used.
Default is None, i.e, the Ward algorithm is unstructured.
n_components : int (optional)
Number of connected components. If None the number of connected
components is estimated from the connectivity matrix.
copy : bool (optional)
Make a copy of connectivity or work inplace. If connectivity
is not of LIL type there will be a copy in any case.
n_clusters : int (optional)
Stop early the construction of the tree at n_clusters. This is
useful to decrease computation time if the number of clusters is
not small compared to the number of samples. In this case, the
complete tree is not computed, thus the 'children' output is of
limited use, and the 'parents' output should rather be used.
This option is valid only when specifying a connectivity matrix.
Returns
-------
children : 2D array, shape (n_nodes, 2)
The children of each non-leaf node. Values less than `n_samples` refer
to leaves of the tree. A greater value `i` indicates a node with
children `children[i - n_samples]`.
n_components : int
The number of connected components in the graph.
n_leaves : int
The number of leaves in the tree
parents : 1D array, shape (n_nodes, ) or None
The parent of each node. Only returned when a connectivity matrix
is specified, elsewhere 'None' is returned.
"""
X = np.asarray(X)
if X.ndim == 1:
X = np.reshape(X, (-1, 1))
n_samples, n_features = X.shape
if connectivity is None:
if n_clusters is not None:
warnings.warn('Early stopping is implemented only for '
'structured Ward clustering (i.e. with '
'explicit connectivity.', stacklevel=2)
out = hierarchy.ward(X)
children_ = out[:, :2].astype(np.intp)
return children_, 1, n_samples, None
# Compute the number of nodes
if n_components is None:
n_components, labels = connected_components(connectivity)
# Convert connectivity matrix to LIL with a copy if needed
if sparse.isspmatrix_lil(connectivity) and copy:
connectivity = connectivity.copy()
elif not sparse.isspmatrix(connectivity):
connectivity = sparse.lil_matrix(connectivity)
else:
connectivity = connectivity.tolil()
if n_components > 1:
warnings.warn("the number of connected components of the "
"connectivity matrix is %d > 1. Completing it to avoid "
"stopping the tree early." % n_components)
connectivity = _fix_connectivity(X, connectivity, n_components, labels)
n_components = 1
if n_clusters is None:
n_nodes = 2 * n_samples - n_components
else:
assert n_clusters <= n_samples
n_nodes = 2 * n_samples - n_clusters
if (connectivity.shape[0] != n_samples
or connectivity.shape[1] != n_samples):
raise ValueError('Wrong shape for connectivity matrix: %s '
'when X is %s' % (connectivity.shape, X.shape))
# create inertia matrix
coord_row = []
coord_col = []
A = []
for ind, row in enumerate(connectivity.rows):
A.append(row)
# We keep only the upper triangular for the moments
# Generator expressions are faster than arrays on the following
row = [i for i in row if i < ind]
coord_row.extend(len(row) * [ind, ])
coord_col.extend(row)
coord_row = np.array(coord_row, dtype=np.intp, order='C')
coord_col = np.array(coord_col, dtype=np.intp, order='C')
# build moments as a list
moments_1 = np.zeros(n_nodes, order='C')
moments_1[:n_samples] = 1
moments_2 = np.zeros((n_nodes, n_features), order='C')
moments_2[:n_samples] = X
inertia = np.empty(len(coord_row), dtype=np.float, order='C')
_hierarchical.compute_ward_dist(moments_1, moments_2, coord_row, coord_col,
inertia)
inertia = list(six.moves.zip(inertia, coord_row, coord_col))
heapify(inertia)
# prepare the main fields
parent = np.arange(n_nodes, dtype=np.intp)
heights = np.zeros(n_nodes)
used_node = np.ones(n_nodes, dtype=bool)
children = []
not_visited = np.empty(n_nodes, dtype=np.int8, order='C')
# recursive merge loop
for k in range(n_samples, n_nodes):
# identify the merge
while True:
inert, i, j = heappop(inertia)
if used_node[i] and used_node[j]:
break
parent[i], parent[j], heights[k] = k, k, inert
children.append([i, j])
used_node[i] = used_node[j] = False
# update the moments
moments_1[k] = moments_1[i] + moments_1[j]
moments_2[k] = moments_2[i] + moments_2[j]
# update the structure matrix A and the inertia matrix
coord_col = []
not_visited.fill(1)
not_visited[k] = 0
_hierarchical._get_parents(A[i], coord_col, parent, not_visited)
_hierarchical._get_parents(A[j], coord_col, parent, not_visited)
# List comprehension is faster than a for loop
[A[l].append(k) for l in coord_col]
A.append(coord_col)
coord_col = np.array(coord_col, dtype=np.intp, order='C')
coord_row = np.empty(coord_col.shape, dtype=np.intp, order='C')
coord_row.fill(k)
n_additions = len(coord_row)
ini = np.empty(n_additions, dtype=np.float, order='C')
_hierarchical.compute_ward_dist(moments_1, moments_2,
coord_row, coord_col, ini)
# List comprehension is faster than a for loop
[heappush(inertia, (ini[idx], k, coord_col[idx]))
for idx in range(n_additions)]
# Separate leaves in children (empty lists up to now)
n_leaves = n_samples
children = np.array(children) # return numpy array for efficient caching
return children, n_components, n_leaves, parent
###############################################################################
# For non fully-connected graphs
def _fix_connectivity(X, connectivity, n_components, labels):
"""
Warning: modifies connectivity in place
"""
for i in range(n_components):
idx_i = np.where(labels == i)[0]
Xi = X[idx_i]
for j in range(i):
idx_j = np.where(labels == j)[0]
Xj = X[idx_j]
D = euclidean_distances(Xi, Xj)
ii, jj = np.where(D == np.min(D))
ii = ii[0]
jj = jj[0]
connectivity[idx_i[ii], idx_j[jj]] = True
connectivity[idx_j[jj], idx_i[ii]] = True
return connectivity
###############################################################################
# Functions for cutting hierarchical clustering tree
def _hc_cut(n_clusters, children, n_leaves):
"""Function cutting the ward tree for a given number of clusters.
Parameters
----------
n_clusters : int or ndarray
The number of clusters to form.
children : list of pairs. Length of n_nodes
The children of each non-leaf node. Values less than `n_samples` refer
to leaves of the tree. A greater value `i` indicates a node with
children `children[i - n_samples]`.
n_leaves : int
Number of leaves of the tree.
Returns
-------
labels : array [n_samples]
cluster labels for each point
"""
if n_clusters > n_leaves:
raise ValueError('Cannot extract more clusters than samples: '
'%s clusters where given for a tree with %s leaves.'
% (n_clusters, n_leaves))
# In this function, we store nodes as a heap to avoid recomputing
# the max of the nodes: the first element is always the smallest
# We use negated indices as heaps work on smallest elements, and we
# are interested in largest elements
# children[-1] is the root of the tree
nodes = [-(max(children[-1]) + 1)]
for i in range(n_clusters - 1):
# As we have a heap, nodes[0] is the smallest element
these_children = children[-nodes[0] - n_leaves]
# Insert the 2 children and remove the largest node
heappush(nodes, -these_children[0])
heappushpop(nodes, -these_children[1])
label = np.zeros(n_leaves, dtype=np.intp)
for i, node in enumerate(nodes):
label[_hierarchical._hc_get_descendent(-node, children, n_leaves)] = i
return label
###############################################################################
# Class for Ward hierarchical clustering
class Ward(BaseEstimator, ClusterMixin):
"""Ward hierarchical clustering: constructs a tree and cuts it.
Recursively merges the pair of clusters that minimally increases
within-cluster variance.
Parameters
----------
n_clusters : int, default=2
The number of clusters to find.
connectivity : sparse matrix (optional)
Connectivity matrix. Defines for each sample the neighboring
samples following a given structure of the data.
Default is None, i.e, the hierarchical clustering algorithm is
unstructured.
memory : Instance of joblib.Memory or string (optional)
Used to cache the output of the computation of the tree.
By default, no caching is done. If a string is given, it is the
path to the caching directory.
copy : bool, default=True
Copy the connectivity matrix or work in-place.
n_components : int (optional)
The number of connected components in the graph defined by the \
connectivity matrix. If not set, it is estimated.
compute_full_tree: bool or 'auto' (optional)
Stop early the construction of the tree at n_clusters. This is
useful to decrease computation time if the number of clusters is
not small compared to the number of samples. This option is
useful only when specifying a connectivity matrix. Note also that
when varying the number of cluster and using caching, it may
be advantageous to compute the full tree.
Attributes
----------
`children_` : array-like, shape = [n_nodes, 2]
The children of each non-leaf node. Values less than `n_samples` refer
to leaves of the tree. A greater value `i` indicates a node with
children `children_[i - n_samples]`.
`labels_` : array [n_samples]
cluster labels for each point
`n_leaves_` : int
Number of leaves in the hierarchical tree.
`n_components_` : int
The estimated number of connected components in the graph.
"""
def __init__(self, n_clusters=2, memory=Memory(cachedir=None, verbose=0),
connectivity=None, copy=True, n_components=None,
compute_full_tree='auto'):
self.n_clusters = n_clusters
self.memory = memory
self.copy = copy
self.n_components = n_components
self.connectivity = connectivity
self.compute_full_tree = compute_full_tree
def fit(self, X):
"""Fit the hierarchical clustering on the data
Parameters
----------
X : array-like, shape = [n_samples, n_features]
The samples a.k.a. observations.
Returns
-------
self
"""
memory = self.memory
X = array2d(X)
if isinstance(memory, six.string_types):
memory = Memory(cachedir=memory, verbose=0)
if not self.connectivity is None:
if not sparse.issparse(self.connectivity):
raise TypeError("`connectivity` should be a sparse matrix or "
"None, got: %r" % type(self.connectivity))
if (self.connectivity.shape[0] != X.shape[0] or
self.connectivity.shape[1] != X.shape[0]):
raise ValueError("`connectivity` does not have shape "
"(n_samples, n_samples)")
n_samples = len(X)
compute_full_tree = self.compute_full_tree
if self.connectivity is None:
compute_full_tree = True
if compute_full_tree == 'auto':
# Early stopping is likely to give a speed up only for
# a large number of clusters. The actual threshold
# implemented here is heuristic
compute_full_tree = self.n_clusters > max(100, .02 * n_samples)
n_clusters = self.n_clusters
if compute_full_tree:
n_clusters = None
# Construct the tree
self.children_, self.n_components_, self.n_leaves_, parents = \
memory.cache(ward_tree)(X, self.connectivity,
n_components=self.n_components,
copy=self.copy, n_clusters=n_clusters)
# Cut the tree
if compute_full_tree:
self.labels_ = _hc_cut(self.n_clusters, self.children_,
self.n_leaves_)
else:
labels = _hierarchical.hc_get_heads(parents, copy=False)
# copy to avoid holding a reference on the original array
labels = np.copy(labels[:n_samples])
# Reasign cluster numbers
self.labels_ = np.searchsorted(np.unique(labels), labels)
return self
###############################################################################
# Ward-based feature agglomeration
class WardAgglomeration(AgglomerationTransform, Ward):
"""Feature agglomeration based on Ward hierarchical clustering
Parameters
----------
n_clusters : int, default=2
The number of clusters.
connectivity : sparse matrix (optional)
connectivity matrix. Defines for each feature the neighboring
features following a given structure of the data.
Default is None, i.e, the hierarchical agglomeration algorithm is
unstructured.
memory : Instance of joblib.Memory or string (optional)
Used to cache the output of the computation of the tree.
By default, no caching is done. If a string is given, it is the
path to the caching directory.
copy : bool, default=True
Copy the connectivity matrix or work in-place.
n_components : int (optional)
The number of connected components in the graph defined by the
connectivity matrix. If not set, it is estimated.
compute_full_tree: bool or 'auto' (optional)
Stop early the construction of the tree at n_clusters. This is
useful to decrease computation time if the number of clusters is
not small compared to the number of samples. This option is
useful only when specifying a connectivity matrix. Note also that
when varying the number of cluster and using caching, it may
be advantageous to compute the full tree.
Attributes
----------
`children_` : array-like, shape = [n_nodes, 2]
The children of each non-leaf node. Values less than `n_samples` refer
to leaves of the tree. A greater value `i` indicates a node with
children `children_[i - n_samples]`.
`labels_` : array [n_features]
cluster labels for each feature
`n_leaves_` : int
Number of leaves in the hierarchical tree.
`n_components_` : int
The estimated number of connected components in the graph.
"""
def fit(self, X, y=None, **params):
"""Fit the hierarchical clustering on the data
Parameters
----------
X : array-like, shape = [n_samples, n_features]
The data
Returns
-------
self
"""
return Ward.fit(self, X.T, **params)
|