This file is indexed.

/usr/share/pyshared/reverend/thomas.py is in python-reverend 0.4-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# This module is part of the Divmod project and is Copyright 2003 Amir Bakhtiar:
# amir@divmod.org.  This is free software; you can redistribute it and/or
# modify it under the terms of version 2.1 of the GNU Lesser General Public
# License as published by the Free Software Foundation.
#

import operator
import re
import math
from sets import Set

class BayesData(dict):

    def __init__(self, name='', pool=None):
        self.name = name
        self.training = []
        self.pool = pool
        self.tokenCount = 0
        self.trainCount = 0
        
    def trainedOn(self, item):
        return item in self.training

    def __repr__(self):
        return '<BayesDict: %s, %s tokens>' % (self.name, self.tokenCount)
        
class Bayes(object):
    
    def __init__(self, tokenizer=None, combiner=None, dataClass=None):
        if dataClass is None:
            self.dataClass = BayesData
        else:
            self.dataClass = dataClass
        self.corpus = self.dataClass('__Corpus__')
        self.pools = {}
        self.pools['__Corpus__'] = self.corpus
        self.trainCount = 0
        self.dirty = True
        # The tokenizer takes an object and returns
        # a list of strings
        if tokenizer is None:
            self._tokenizer = Tokenizer()
        else:
            self._tokenizer = tokenizer
        # The combiner combines probabilities
        if combiner is None:
            self.combiner = self.robinson
        else:
            self.combiner = combiner

    def commit(self):
        self.save()

    def newPool(self, poolName):
        """Create a new pool, without actually doing any
        training.
        """
        self.dirty = True # not always true, but it's simple
        return self.pools.setdefault(poolName, self.dataClass(poolName))

    def removePool(self, poolName):
        del(self.pools[poolName])
        self.dirty = True

    def renamePool(self, poolName, newName):
        self.pools[newName] = self.pools[poolName]
        self.pools[newName].name = newName
        self.removePool(poolName)
        self.dirty = True

    def mergePools(self, destPool, sourcePool):
        """Merge an existing pool into another.
        The data from sourcePool is merged into destPool.
        The arguments are the names of the pools to be merged.
        The pool named sourcePool is left in tact and you may
        want to call removePool() to get rid of it.
        """
        sp = self.pools[sourcePool]
        dp = self.pools[destPool]
        for tok, count in sp.items():
            if dp.get(tok):
                dp[tok] += count
            else:
                dp[tok] = count
                dp.tokenCount += 1
        self.dirty = True

    def poolData(self, poolName):
        """Return a list of the (token, count) tuples.
        """
        return self.pools[poolName].items()

    def poolTokens(self, poolName):
        """Return a list of the tokens in this pool.
        """
        return [tok for tok, count in self.poolData(poolName)]

    def save(self, fname='bayesdata.dat'):
        from cPickle import dump
        fp = open(fname, 'wb')
        dump(self.pools, fp)
        fp.close()

    def load(self, fname='bayesdata.dat'):
        from cPickle import load
        fp = open(fname, 'rb')
        self.pools = load(fp)
        fp.close()
        self.corpus = self.pools['__Corpus__']
        self.dirty = True

    def poolNames(self):
        """Return a sorted list of Pool names.
        Does not include the system pool '__Corpus__'.
        """
        pools = self.pools.keys()
        pools.remove('__Corpus__')
        pools = [pool for pool in pools]
        pools.sort()
        return pools

    def buildCache(self):
        """ merges corpora and computes probabilities
        """
        self.cache = {}
        for pname, pool in self.pools.items():
            # skip our special pool
            if pname == '__Corpus__':
                continue
            
            poolCount = pool.tokenCount
            themCount = max(self.corpus.tokenCount - poolCount, 1)
            cacheDict = self.cache.setdefault(pname, self.dataClass(pname))

            for word, totCount in self.corpus.items():
                # for every word in the copus
                # check to see if this pool contains this word
                thisCount = float(pool.get(word, 0.0))
                if (thisCount == 0.0):
                	continue
                otherCount = float(totCount) - thisCount

                if not poolCount:
                    goodMetric = 1.0
                else:
                    goodMetric = min(1.0, otherCount/poolCount)
                badMetric = min(1.0, thisCount/themCount)
                f = badMetric / (goodMetric + badMetric)
                
                # PROBABILITY_THRESHOLD
                if abs(f-0.5) >= 0.1 :
                    # GOOD_PROB, BAD_PROB
                    cacheDict[word] = max(0.0001, min(0.9999, f))
                    
    def poolProbs(self):
        if self.dirty:
            self.buildCache()
            self.dirty = False
        return self.cache

    def getTokens(self, obj):
        """By default, we expect obj to be a screen and split
        it on whitespace.

        Note that this does not change the case.
        In some applications you may want to lowecase everthing
        so that "king" and "King" generate the same token.
        
        Override this in your subclass for objects other
        than text.

        Alternatively, you can pass in a tokenizer as part of
        instance creation.
        """
        return self._tokenizer.tokenize(obj)

    def getProbs(self, pool, words):
        """ extracts the probabilities of tokens in a message
        """
        probs = [(word, pool[word]) for word in words if word in pool]
        probs.sort(lambda x,y: cmp(y[1],x[1]))
        return probs[:2048]

    def train(self, pool, item, uid=None):
        """Train Bayes by telling him that item belongs
        in pool. uid is optional and may be used to uniquely
        identify the item that is being trained on.
        """
        tokens = self.getTokens(item)
        pool = self.pools.setdefault(pool, self.dataClass(pool))
        self._train(pool, tokens)
        self.corpus.trainCount += 1
        pool.trainCount += 1
        if uid:
            pool.training.append(uid)
        self.dirty = True

    def untrain(self, pool, item, uid=None):
        tokens = self.getTokens(item)
        pool = self.pools.get(pool, None)
        if not pool:
            return
        self._untrain(pool, tokens)
        # I guess we want to count this as additional training?
        self.corpus.trainCount += 1
        pool.trainCount += 1
        if uid:
            pool.training.remove(uid)
        self.dirty = True

    def _train(self, pool, tokens):
        wc = 0
        for token in tokens:
            count = pool.get(token, 0)
            pool[token] =  count + 1
            count = self.corpus.get(token, 0)
            self.corpus[token] =  count + 1
            wc += 1
        pool.tokenCount += wc
        self.corpus.tokenCount += wc

    def _untrain(self, pool, tokens):
        for token in tokens:
            count = pool.get(token, 0)
            if count:
                if count == 1:
                    del(pool[token])
                else:
                    pool[token] =  count - 1
                pool.tokenCount -= 1
                
            count = self.corpus.get(token, 0)
            if count:
                if count == 1:
                    del(self.corpus[token])
                else:
                    self.corpus[token] =  count - 1
                self.corpus.tokenCount -= 1

    def trainedOn(self, msg):            
        for p in self.cache.values():
            if msg in p.training:
                return True
        return False

    def guess(self, msg):
        tokens = Set(self.getTokens(msg))
        pools = self.poolProbs()

        res = {}
        for pname, pprobs in pools.items():
            p = self.getProbs(pprobs, tokens)
            if len(p) != 0:
                res[pname]=self.combiner(p, pname)
        res = res.items()
        res.sort(lambda x,y: cmp(y[1], x[1]))
        return res        

    def robinson(self, probs, ignore):
        """ computes the probability of a message being spam (Robinson's method)
            P = 1 - prod(1-p)^(1/n)
            Q = 1 - prod(p)^(1/n)
            S = (1 + (P-Q)/(P+Q)) / 2
            Courtesy of http://christophe.delord.free.fr/en/index.html
        """
        
        nth = 1./len(probs)
        P = 1.0 - reduce(operator.mul, map(lambda p: 1.0-p[1], probs), 1.0) ** nth
        Q = 1.0 - reduce(operator.mul, map(lambda p: p[1], probs)) ** nth
        S = (P - Q) / (P + Q)
        return (1 + S) / 2


    def robinsonFisher(self, probs, ignore):
        """ computes the probability of a message being spam (Robinson-Fisher method)
            H = C-1( -2.ln(prod(p)), 2*n )
            S = C-1( -2.ln(prod(1-p)), 2*n )
            I = (1 + H - S) / 2
            Courtesy of http://christophe.delord.free.fr/en/index.html
        """
        n = len(probs)
        try: H = chi2P(-2.0 * math.log(reduce(operator.mul, map(lambda p: p[1], probs), 1.0)), 2*n)
        except OverflowError: H = 0.0
        try: S = chi2P(-2.0 * math.log(reduce(operator.mul, map(lambda p: 1.0-p[1], probs), 1.0)), 2*n)
        except OverflowError: S = 0.0
        return (1 + H - S) / 2

    def __repr__(self):
        return '<Bayes: %s>' % [self.pools[p] for p in self.poolNames()]

    def __len__(self):
        return len(self.corpus)

class Tokenizer:
    """A simple regex-based whitespace tokenizer.
    It expects a string and can return all tokens lower-cased
    or in their existing case.
    """
    
    WORD_RE = re.compile('\\w+', re.U)

    def __init__(self, lower=False):
        self.lower = lower
        
    def tokenize(self, obj):
        for match in self.WORD_RE.finditer(obj):
            if self.lower:
                yield match.group().lower()
            else:
                yield match.group()
    
def chi2P(chi, df):
    """ return P(chisq >= chi, with df degree of freedom)

    df must be even
    """
    assert df & 1 == 0
    m = chi / 2.0
    sum = term = math.exp(-m)
    for i in range(1, df/2):
        term *= m/i
        sum += term
    return min(sum, 1.0)