This file is indexed.

/usr/share/pyshared/pyevolve/Util.py is in python-pyevolve 0.6~rc1+svn398+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
"""

:mod:`Util` -- utility module
============================================================================

This is the utility module, with some utility functions of general
use, like list item swap, random utilities and etc.

"""

from random import random as rand_random
from math import sqrt as math_sqrt
import logging
import Consts

def randomFlipCoin(p):
   """ Returns True with the *p* probability. If the *p* is 1.0,
   the function will always return True, or if is 0.0, the
   function will return always False.
   
   Example:
      >>> Util.randomFlipCoin(1.0)
      True

   :param p: probability, between 0.0 and 1.0
   :rtype: True or False

   """
   if p == 1.0: return True
   if p == 0.0: return False

   return True if rand_random() <= p else False
   
def listSwapElement(lst, indexa, indexb):
   """ Swaps elements A and B in a list.

   Example:
      >>> l = [1, 2, 3]
      >>> Util.listSwapElement(l, 1, 2)
      >>> l
      [1, 3, 2]

   :param lst: the list
   :param indexa: the swap element A
   :param indexb: the swap element B
   :rtype: None

   """
   lst[indexa], lst[indexb] = lst[indexb], lst[indexa]

def list2DSwapElement(lst, indexa, indexb):
   """ Swaps elements A and B in a 2D list (matrix).

   Example:
      >>> l = [ [1,2,3], [4,5,6] ] 
      >>> Util.list2DSwapElement(l, (0,1), (1,1) )
      >>> l
      [[1, 5, 3], [4, 2, 6]]

   :param lst: the list
   :param indexa: the swap element A
   :param indexb: the swap element B
   :rtype: None

   """
   temp = lst[indexa[0]][indexa[1]]
   lst[indexa[0]][indexa[1]] = lst[indexb[0]][indexb[1]]
   lst[indexb[0]][indexb[1]] = temp

def raiseException(message, expt=None):
   """ Raise an exception and logs the message.

   Example:
      >>> Util.raiseException('The value is not an integer', ValueError)

   :param message: the message of exception
   :param expt: the exception class
   :rtype: None

   """
   logging.critical(message)
   if expt is None:
      raise Exception(message)
   else:
      raise expt, message


def cmp_individual_raw(a, b):
   """ Compares two individual raw scores

   Example:
      >>> GPopulation.cmp_individual_raw(a, b)
   
   :param a: the A individual instance
   :param b: the B individual instance
   :rtype: 0 if the two individuals raw score are the same,
           -1 if the B individual raw score is greater than A and
           1 if the A individual raw score is greater than B.

   .. note:: this function is used to sorte the population individuals

   """
   if a.score < b.score: return -1
   if a.score > b.score: return 1
   return 0
   
def cmp_individual_scaled(a, b):
   """ Compares two individual fitness scores, used for sorting population

   Example:
      >>> GPopulation.cmp_individual_scaled(a, b)
   
   :param a: the A individual instance
   :param b: the B individual instance
   :rtype: 0 if the two individuals fitness score are the same,
           -1 if the B individual fitness score is greater than A and
           1 if the A individual fitness score is greater than B.

   .. note:: this function is used to sorte the population individuals

   """
   if a.fitness < b.fitness: return -1
   if a.fitness > b.fitness: return 1
   return 0

def importSpecial(name):
   """ This function will import the *name* module, if fails,
   it will raise an ImportError exception and a message

   :param name: the module name
   :rtype: the module object
   
   .. versionadded:: 0.6
      The *import_special* function
   """
   try:
      imp_mod = __import__(name)
   except ImportError:
      raiseException("Cannot import module %s: %s" % (name, Consts.CDefImportList[name]), expt=ImportError)
   return imp_mod 

class ErrorAccumulator:
   """ An accumulator for the Root Mean Square Error (RMSE) and the
   Mean Square Error (MSE)
   """
   def __init__(self):
      self.acc        = 0.0
      self.acc_square = 0.0
      self.acc_len    = 0

   def reset(self):
      """ Reset the accumulator """
      self.acc_square = 0.0
      self.acc        = 0.0
      self.acc_len    = 0

   def append(self, target, evaluated):
      """ Add value to the accumulator
      
      :param target: the target value
      :param evaluated: the evaluated value
      """
      self.acc_square += (target - evaluated)**2
      self.acc        += (target - evaluated)
      self.acc_len    +=1
      
   def __iadd__(self, value):
      """ The same as append, but you must pass a tuple """
      self.acc_square += (value[0] - value[1])**2
      self.acc        += abs(value[0] - value[1])
      self.acc_len    +=1
      return self

   def getMean(self):
      """ Return the mean of the non-squared accumulator """
      return self.acc / self.acc_len

   def getSquared(self):
      """ Returns the squared accumulator """
      return self.acc_square

   def getNonSquared(self):
      """ Returns the non-squared accumulator """
      return self.acc

   def getAdjusted(self):
      """ Returns the adjusted fitness
      This fitness is calculated as 1 / (1 + standardized fitness)
      """
      return 1.0/(1.0 + self.acc)

   def getRMSE(self):
      """ Return the root mean square error
      
      :rtype: float RMSE
      """
      return math_sqrt(self.acc_square / float(self.acc_len))

   def getMSE(self):
      """ Return the mean square error

      :rtype: float MSE
      """
      return (self.acc_square / float(self.acc_len))


class Graph:
   """ The Graph class

   Example:
      >>> g = Graph()
      >>> g.addEdge("a", "b")
      >>> g.addEdge("b", "c")
      >>> for node in g:
      ...    print node
      a
      b
      c
   
   .. versionadded:: 0.6
      The *Graph* class.
   """

   def __init__(self):
      """ The constructor """
      self.adjacent = {}

   def __iter__(self):
      """ Returns an iterator to the all graph elements """
      return iter(self.adjacent)

   def addNode(self, node):
      """ Add the node

      :param node: the node to add
      """
      if node not in self.adjacent:
         self.adjacent[node] = {}

   def __iadd__(self, node):
      """ Add a node using the += operator """
      self.addNode(node)
      return self

   def addEdge(self, a, b):
      """ Add an edge between two nodes, if the nodes
      doesn't exists, they will be created
      
      :param a: the first node
      :param b: the second node
      """
      if a not in self.adjacent: 
         self.adjacent[a] = {}

      if b not in self.adjacent: 
         self.adjacent[b] = {}

      self.adjacent[a][b] = True
      self.adjacent[b][a] = True

   def getNodes(self):
      """ Returns all the current nodes on the graph
      
      :rtype: the list of nodes
      """
      return self.adjacent.keys()

   def reset(self):
      """ Deletes all nodes of the graph """
      self.adjacent.clear() 

   def getNeighbors(self, node):
      """ Returns the neighbors of the node
      
      :param node: the node
      """
      return self.adjacent[node].keys()

   def __getitem__(self, node):
      """ Returns the adjacent nodes of the node """
      return self.adjacent[node].keys()

   def __repr__(self):
      ret =  "- Graph\n"
      ret += "\tNode list:\n"
      for node in self:
         ret += "\t\tNode [%s] = %s\n" % (node, self.getNeighbors(node))
      return ret         
      

def G1DListGetEdgesComposite(mom, dad):
   """ Get the edges and the merge between the edges of two G1DList individuals

   :param mom: the mom G1DList individual
   :param dad: the dad G1DList individual
   :rtype: a tuple (mom edges, dad edges, merge)
   """
   mom_edges = G1DListGetEdges(mom)
   dad_edges = G1DListGetEdges(dad)
   return (mom_edges, dad_edges, G1DListMergeEdges(mom_edges, dad_edges))

def G1DListGetEdges(individual):
   """ Get the edges of a G1DList individual 

   :param individual: the G1DList individual
   :rtype: the edges dictionary
   """
   edg = {}
   ind_list = individual.getInternalList()
   for i in xrange(len(ind_list)):
      a, b = ind_list[i], ind_list[i-1]

      if a not in edg: edg[a] = []
      else: edg[a].append(b)

      if b not in edg: edg[b] = []
      else: edg[b].append(a)
   return edg
 
def G1DListMergeEdges(eda, edb):
   """ Get the merge between the two individual edges

   :param eda: the edges of the first G1DList genome
   :param edb: the edges of the second G1DList genome
   :rtype: the merged dictionary
   """
   edges = {}
   for value, near in eda.items():
      for adj in near:
         if (value in edb) and (adj in edb[value]):
            edges.setdefault(value, []).append(adj)
   return edges