/usr/share/pyshared/nxs/tree.py is in python-nxs 4.3.2-svn1919-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 | #!/usr/bin/env python
# This program is public domain
# Author: Paul Kienzle, Ray Osborn
"""
NeXus data as Python trees
==========================
The `nexus.tree` modules are designed to accomplish two goals:
1. To provide convenient access to existing data contained in NeXus files.
2. To enable new NeXus data to be created and manipulated interactively.
These goals are achieved by mapping hierarchical NeXus data structures directly
into python objects, which either represent NeXus groups or NeXus fields.
Entries in a group are referenced much like fields in a class are referenced in
python. The entire data hierarchy can be referenced at any time, whether the
NeXus data has been loaded in from an existing NeXus file or created dynamically
within the python session. This provides a much more natural scripting interface
to NeXus data than the directory model of the `nexus.napi` interface.
Example 1: Loading a NeXus file
-------------------------------
The following commands loads NeXus data from a file, displays (some of) the
contents as a tree, and then accesses individual data items.
>>> from nexpy.api import nexus as nx
>>> a=nx.load('sns/data/ARCS_7326.nxs')
>>> print a.tree
root:NXroot
@HDF5_Version = 1.8.2
@NeXus_version = 4.2.1
@file_name = ARCS_7326.nxs
@file_time = 2010-05-05T01:59:25-05:00
entry:NXentry
data:NXdata
data = float32(631x461x4x825)
@axes = rotation_angle:tilt_angle:sample_angle:time_of_flight
@signal = 1
rotation_angle = float32(632)
@units = degree
sample_angle = [ 210. 215. 220. 225. 230.]
@units = degree
tilt_angle = float32(462)
@units = degree
time_of_flight = float32(826)
@units = microsecond
run_number = 7326
sample:NXsample
pulse_time = 2854.94747365
@units = microsecond
.
.
.
>>> a.entry.run_number
NXfield(7326)
So the tree returned from load() has an entry for each group, field and
attribute. You can traverse the hierarchy using the names of the groups. For
example, tree.entry.instrument.detector.distance is an example of a field
containing the distance to each pixel in the detector. Entries can also be
referenced by NXclass name, such as tree.NXentry[0].instrument. Since there may
be multiple entries of the same NeXus class, the NXclass attribute returns a
(possibly empty) list.
The load() and save() functions are implemented using the class
`nexus.tree.NeXusTree`, a subclass of `nexus.napi.NeXus` which allows all the
usual API functions.
Example 2: Creating a NeXus file dynamically
--------------------------------------------
The second example shows how to create NeXus data dynamically and saves it to a
file. The data are first created as Numpy arrays
>>> import numpy as np
>>> x=y=np.linspace(0,2*np.pi,101)
>>> X,Y=np.meshgrid(y,x)
>>> z=np.sin(X)*np.sin(Y)
Then a NeXus data groups are created and the data inserted to produce a
NeXus-compliant structure that can be saved to a file.
>>> root=nx.NXroot(NXentry())
>>> print root.tree
root:NXroot
entry:NXentry
>>> root.entry.data=nx.NXdata(z,[x,y])
Additional metadata can be inserted before saving the data to a file.
>>> root.entry.sample=nx.NXsample()
>>> root.entry.sample.temperature = 40.0
>>> root.entry.sample.temperature.units = 'K'
>>> root.save('example.nxs')
NXfield objects have much of the functionality of Numpy arrays. They may be used
in simple arithmetic expressions with other NXfields, Numpy arrays or scalar
values and will be cast as ndarray objects if used as arguments in Numpy
modules.
>>> x=nx.NXfield(np.linspace(0,10.0,11))
>>> x
NXfield([ 0. 1. 2. ..., 8. 9. 10.])
>>> x + 10
NXfield([ 10. 11. 12. ..., 18. 19. 20.])
>>> sin(x)
array([ 0. , 0.84147098, 0.90929743, ..., 0.98935825,
0.41211849, -0.54402111])
If the arithmetic operation is assigned to a NeXus group attribute, it will be
automatically cast as a valid NXfield object with the type and shape determined
by the Numpy array type and shape.
>>> entry.data.result = sin(x)
>>> entry.data.result
NXfield([ 0. 0.84147098 0.90929743 ..., 0.98935825 0.41211849
-0.54402111])
>>> entry.data.result.dtype, entry.data.result.shape
(dtype('float64'), (11,))
NeXus Objects
-------------
Properties of the entry in the tree are referenced by attributes that depend
on the object type, different nx attributes may be available.
Objects (class NXobject) have attributes shared by both groups and fields::
* nxname object name
* nxclass object class for groups, 'NXfield' for fields
* nxgroup group containing the entry, or None for the root
* attrs dictionary of NeXus attributes for the object
Groups (class NXgroup) have attributes for accessing children::
* entries dictionary of entries within the group
* component('nxclass') return group entries of a particular class
* dir() print the list of entries in the group
* tree return the list of entries and subentries in the group
* plot() plot signal and axes for the group, if available
Fields (class NXfield) have attributes for accessing data:
* shape dimensions of data in the field
* dtype data type
* nxdata data in the field
Linked fields or groups (class NXlink) have attributes for accessing the link::
* nxlink reference to the linked field or group
NeXus attributes (class NXattr) have a type and a value only::
* dtype attribute type
* nxdata attribute data
There is a subclass of NXgroup for each group class defined by the NeXus standard,
so it is possible to create an NXgroup of NeXus class NXsample directly using:
>>> sample = NXsample()
The default group name will be the class name following the 'NX', so the above
group will have an nxname of 'sample'. However, this is overridden by the
attribute name when it is assigned as a group attribute, e.g.,
>>> entry.sample1 = NXsample()
>>> entry.sample1.nxname
sample1
You can traverse the tree by component class instead of component name. Since
there may be multiple components of the same class in one group you will need to
specify which one to use. For example,
tree.NXentry[0].NXinstrument[0].NXdetector[0].distance
references the first detector of the first instrument of the first entry.
Unfortunately, there is no guarantee regarding the order of the entries, and it
may vary from call to call, so this is mainly useful in iterative searches.
Unit Conversion
---------------
Data can be stored in the NeXus file in a variety of units, depending on which
facility is storing the file. This makes life difficult for reduction and
analysis programs which must know the units they are working with. Our solution
to this problem is to allow the reader to retrieve data from the file in
particular units. For example, if detector distance is stored in the file using
millimeters you can retrieve them in meters using::
entry.instrument.detector.distance.convert('m')
See `nexus.unit` for more details on the unit formats supported.
Reading and Writing Slabs
-------------------------
The slab interface to field data works by opening the file handle and keeping it
open as long as the slab interface is needed. This is done in python 2.5 using
the with statement. Once the context is entered, get() and put() methods on the
object allow you to read and write data a slab at a time. For example::
# Read a Ni x Nj x Nk array one vector at a time
with root.NXentry[0].data.data as slab:
Ni,Nj,Nk = slab.shape
size = [1,1,Nk]
for i in range(Ni):
for j in range(Nj):
value = slab.get([i,j,0],size)
The equivalent can be done in Python 2.4 and lower using the context
functions __enter__ and __exit__::
slab = data.slab.__enter__()
... do the slab functions ...
data.slab.__exit__()
Plotting NeXus data
-------------------
There is a plot() method for groups that automatically looks for 'signal' and
'axes' attributes within the group in order to determine what to plot. These are
defined by the 'nxsignal' and 'nxaxes' properties of the group. This means that
the method will determine whether the plot should be one- or two- dimensional.
For higher than two dimensions, only the top slice is plotted by default.
The plot method accepts as arguments the standard matplotlib.pyplot.plot format
strings to customize one-dimensional plots, axis and scale limits, and will
transmit keyword arguments to the matplotlib plotting methods.
>>> a=nx.load('chopper.nxs')
>>> a.entry.monitor1.plot()
>>> a.entry.monitor2.plot('r+', xmax=2600)
It is possible to plot over the existing figure with the oplot() method and to
plot with logarithmic intensity scales with the logplot() method. The x- and
y-axes can also be rendered logarithmically using the logx and logy keywards.
Although the plot() method uses matplotlib by default to plot the data, you can replace
this with your own plotter by setting nexus.NXgroup._plotter to your own plotter
class. The plotter class has one method::
plot(signal, axes, entry, title, format, **opts)
where signal is the field containing the data, axes are the fields listing the
signal sample points, entry is file/path within the file to the data group and
title is the title of the group or the parent NXentry, if available.
"""
from __future__ import with_statement
from copy import copy, deepcopy
import numpy as np
import napi
from napi import NeXusError
#Memory in MB
NX_MEMORY = 500
__all__ = ['NeXusTree', 'NXobject', 'NXfield', 'NXgroup', 'NXattr',
'NX_MEMORY', 'setmemory', 'load', 'save', 'tree', 'centers',
'NXlink', 'NXlinkfield', 'NXlinkgroup', 'SDS', 'NXlinkdata']
#List of defined base classes (later added to __all__)
_nxclasses = ['NXroot', 'NXentry', 'NXsubentry', 'NXdata', 'NXmonitor',
'NXlog', 'NXsample', 'NXinstrument', 'NXaperture', 'NXattenuator',
'NXbeam', 'NXbeam_stop', 'NXbending_magnet', 'NXcharacterization',
'NXcollection', 'NXcollimator', 'NXcrystal', 'NXdetector',
'NXdisk_chopper', 'NXenvironment', 'NXevent_data',
'NXfermi_chopper', 'NXfilter', 'NXflipper', 'NXgeometry',
'NXguide', 'NXinsertion_device', 'NXmirror', 'NXmoderator',
'NXmonochromator', 'NXnote', 'NXorientation', 'NXparameter',
'NXpolarizer', 'NXpositioner', 'NXprocess', 'NXsensor', 'NXshape',
'NXsource', 'NXtranslation', 'NXuser', 'NXvelocity_selector', 'NXtree']
np.set_printoptions(threshold=5)
class NeXusTree(napi.NeXus):
"""
Structure-based interface to the NeXus file API.
Usage::
file = NeXusTree(filename, ['r','rw','w'])
- open the NeXus file
root = file.readfile()
- read the structure of the NeXus file. This returns a NeXus tree.
file.writefile(root)
- write a NeXus tree to the file.
data = file.readpath(path)
- read data from a particular path
Example::
nx = NeXusTree('REF_L_1346.nxs','r')
tree = nx.readfile()
for entry in tree.NXentry:
process(entry)
copy = NeXusTree('modified.nxs','w')
copy.writefile(tree)
Note that the large datasets are not loaded immediately. Instead, the
when the data set is requested, the file is reopened, the data read, and
the file closed again. open/close are available for when we want to
read/write slabs without the overhead of moving the file cursor each time.
The NXdata objects in the returned tree hold the object values.
"""
def readfile(self):
"""
Read the NeXus file structure from the file and return a tree of NXobjects.
Large datasets are not read until they are needed.
"""
self.open()
self.openpath("/")
root = self._readgroup()
self.close()
root._group = None
# Resolve links (not necessary now that link is set as a property)
#self._readlinks(root, root)
root._file = self
return root
def writefile(self, tree):
"""
Write the NeXus file structure to a file.
The file is assumed to start empty. Updating individual objects can be
done using the napi interface, with nx.handle as the nexus file handle.
"""
self.open()
links = []
for entry in tree.entries.values():
links += self._writegroup(entry, path="")
self._writelinks(links)
self.close()
def readpath(self, path):
"""
Return the data on a particular file path.
Returns a numpy array containing the data, a python scalar, or a
string depending on the shape and storage class.
"""
self.open()
self.openpath(path)
try:
return self.getdata()
except ValueError:
return None
def _readdata(self, name):
"""
Read a data object and return it as an NXfield or NXlink.
"""
# Finally some data, but don't read it if it is big
# Instead record the location, type and size
self.opendata(name)
attrs={}
attrs = self.getattrs()
if 'target' in attrs and attrs['target'] != self.path:
# This is a linked dataset; don't try to load it.
data = NXlinkfield(target=attrs['target'], name=name)
else:
dims,type = self.getinfo()
#Read in the data if it's not too large
if np.prod(dims) < 1000:# i.e., less than 1k dims
try:
value = self.getdata()
except ValueError:
value = None
else:
value = None
data = NXfield(value=value,name=name,dtype=type,shape=dims,attrs=attrs)
self.closedata()
data._infile = data._saved = data._changed = True
return data
# These are groups that HDFView explicitly skips
_skipgroups = ['CDF0.0','_HDF_CHK_TBL_','Attr0.0','RIG0.0','RI0.0',
'RIATTR0.0N','RIATTR0.0C']
def _readchildren(self,n):
children = {}
for _item in range(n):
name,nxclass = self.getnextentry()
if nxclass in self._skipgroups:
pass # Skip known bogus classes
elif nxclass == 'SDS': # NXgetnextentry returns 'SDS' as the class for NXfields
children[name] = self._readdata(name)
else:
self.opengroup(name,nxclass)
children[name] = self._readgroup()
self.closegroup()
return children
def _readgroup(self):
"""
Read the currently open group and return it as an NXgroup.
"""
n,name,nxclass = self.getgroupinfo()
attrs = {}
attrs = self.getattrs()
if 'target' in attrs and attrs['target'] != self.path:
# This is a linked group; don't try to load it.
group = NXlinkgroup(target=attrs['target'], name=name)
else:
children = self._readchildren(n)
# If we are subclassed with a handler for the particular
# NXentry class name use that constructor for the group
# rather than the generic NXgroup class.
group = NXgroup(nxclass=nxclass,name=name,attrs=attrs,entries=children)
# Build chain back structure
for obj in children.values():
obj._group = group
group._infile = group._saved = group._changed = True
return group
def _readlinks(self, root, group):
"""
Convert linked objects into direct references.
"""
for entry in group.entries.values():
if isinstance(entry, NXlink):
link = root
try:
for level in entry._target[1:].split('/'):
link = getattr(link,level)
entry.nxlink = link
except AttributeError:
pass
elif isinstance(entry, NXgroup):
self._readlinks(root, entry)
def _writeattrs(self, attrs):
"""
Return the attributes for the currently open group/data.
If no group or data object is open, the file attributes are returned.
"""
for name,pair in attrs.iteritems():
self.putattr(name,pair.nxdata,pair.dtype)
def _writedata(self, data, path):
"""
Write the given data to a file.
NXlinks cannot be written until the linked group is created, so
this routine returns the set of links that need to be written.
Call writelinks on the list.
"""
path = path + "/" + data.nxname
# If the data is linked then
if hasattr(data,'_target'):
return [(path, data._target)]
shape = data.shape
if shape == (): shape = (1,)
#If the array size is too large, their product needs a long integer
if np.prod(shape) > 10000:
# Compress the fastest moving dimension of large datasets
slab_dims = np.ones(len(shape),'i')
if shape[-1] < 100000:
slab_dims[-1] = shape[-1]
else:
slab_dims[-1] = 100000
self.compmakedata(data.nxname, data.dtype, shape, 'lzw', slab_dims)
else:
# Don't use compression for small datasets
try:
self.makedata(data.nxname, data.dtype, shape)
except StandardError,errortype:
print "Error in tree, makedata: ",errortype
self.opendata(data.nxname)
self._writeattrs(data.attrs)
value = data.nxdata
if value is not None:
self.putdata(data.nxdata)
self.closedata()
return []
def _writegroup(self, group, path):
"""
Write the given group structure, including the data.
NXlinks cannot be written until the linked group is created, so
this routine returns the set of links that need to be written.
Call writelinks on the list.
"""
path = path + "/" + group.nxname
links = []
self.makegroup(group.nxname, group.nxclass)
self.opengroup(group.nxname, group.nxclass)
self._writeattrs(group.attrs)
if hasattr(group, '_target'):
links += [(path, group._target)]
for child in group.entries.values():
if child.nxclass == 'NXfield':
links += self._writedata(child,path)
elif hasattr(child,'_target'):
links += [(path+"/"+child.nxname,child._target)]
else:
links += self._writegroup(child,path)
self.closegroup()
return links
def _writelinks(self, links):
"""
Create links within the NeXus file.
THese are defined by the set of pairs returned by _writegroup.
"""
gid = {}
# identify targets
for path,target in links:
gid[target] = None
# find gids for targets
for target in gid.iterkeys():
self.openpath(target)
# Can't tell from the name if we are linking to a group or
# to a dataset, so cheat and rely on getdataID to signal
# an error if we are not within a group.
try:
gid[target] = self.getdataID()
except NeXusError:
gid[target] = self.getgroupID()
# link sources to targets
for path,target in links:
if path != target:
# ignore self-links
parent = "/".join(path.split("/")[:-1])
self.openpath(parent)
self.makelink(gid[target])
def _readaxes(axes):
"""
Return a list of axis names stored in the 'axes' attribute.
The delimiter separating each axis can be white space, a comma, or a colon.
"""
import re
sep=re.compile('[\[]*(\s*,*:*)+[\]]*')
return filter(lambda x: len(x)>0, sep.split(axes))
class AttrDict(dict):
"""
A dictionary class to assign all attributes to the NXattr class.
"""
def __setitem__(self, key, value):
if isinstance(value, NXattr):
dict.__setitem__(self, key, value)
else:
dict.__setitem__(self, key, NXattr(value))
class NXattr(object):
"""
Class for NeXus attributes of a NXfield or NXgroup object.
This class is only used for NeXus attributes that are stored in a
NeXus file and helps to distinguish them from Python attributes.
There are two Python attributes for each NeXus attribute.
Python Attributes
-----------------
nxdata : string, Numpy scalar, or Numpy ndarray
The value of the NeXus attribute.
dtype : string
The data type of the NeXus attribute. This is set to 'char' for
a string attribute or the string of the corresponding Numpy data type
for a numeric attribute.
NeXus Attributes
----------------
NeXus attributes are stored in the 'attrs' dictionary of the parent object,
NXfield or NXgroup, but can often be referenced or assigned using the
attribute name as if it were an object attribute.
For example, after assigning the NXfield, the following three attribute
assignments are all equivalent::
>>> entry.sample.temperature = NXfield(40.0)
>>> entry.sample.temperature.attrs['units'] = 'K'
>>> entry.sample.temperature.units = NXattr('K')
>>> entry.sample.temperature.units = 'K'
The third version above is only allowed for NXfield attributes and is
not allowed if the attribute has the same name as one of the following
internally defined attributes, i.e.,
['entries', 'attrs', 'dtype','shape']
or if the attribute name begins with 'nx' or '_'. It is only possible to
reference attributes with one of the proscribed names using the 'attrs'
dictionary.
"""
def __init__(self,value=None,dtype=''):
if isinstance(value, NXattr):
self._data,self._dtype = value.nxdata,value.dtype
elif dtype:
if dtype in np.typeDict:
self._data,self._dtype = np.__dict__[dtype](value),dtype
elif dtype == 'char':
self._data,self._dtype = str(value),dtype
else:
raise NeXusError("Invalid data type")
else:
if isinstance(value, str):
self._data,self._dtype = str(value), 'char'
elif value is not None:
if isinstance(value, NXobject):
raise NeXusError("A data attribute cannot be a NXfield or NXgroup")
else:
self._data = np.array(value)
self._dtype = self._data.dtype.name
if self._data.size == 1:
self._data = np.__dict__[self._dtype](self._data)
else:
self._data,self._dtype = None, 'char'
def __str__(self):
return str(self.nxdata)
def __repr__(self):
if str(self.dtype) == 'char':
return "NXattr('%s')"%self.nxdata
else:
return "NXattr(%s)"%self.nxdata
def __eq__(self, other):
"""
Return true if the value of the attribute is the same as the other.
"""
if isinstance(other, NXattr):
return self.nxdata == other.nxdata
else:
return self.nxdata == other
def _getdata(self):
"""
Return the attribute value.
"""
return self._data
def _getdtype(self):
return self._dtype
nxdata = property(_getdata,doc="The attribute values")
dtype = property(_getdtype, "Data type of NeXus attribute")
_npattrs = filter(lambda x: not x.startswith('_'), np.ndarray.__dict__.keys())
class NXobject(object):
"""
Abstract base class for elements in NeXus files.
The object has a subclass of NXfield, NXgroup, or one of the NXgroup
subclasses. Child nodes should be accessible directly as object attributes.
Constructors for NXobject objects are defined by either the NXfield or
NXgroup classes.
Python Attributes
-----------------
nxclass : string
The class of the NXobject. NXobjects can have class NXfield, NXgroup, or
be one of the NXgroup subclasses.
nxname : string
The name of the NXobject. Since it is possible to reference the same
Python object multiple times, this is not necessarily the same as the
object name. However, if the object is part of a NeXus tree, this will
be the attribute name within the tree.
nxgroup : NXgroup
The parent group containing this object within a NeXus tree. If the
object is not part of any NeXus tree, it will be set to None.
nxpath : string
The path to this object with respect to the root of the NeXus tree. For
NeXus data read from a file, this will be a group of class NXroot, but
if the NeXus tree was defined interactively, it can be any valid
NXgroup.
nxroot : NXgroup
The root object of the NeXus tree containing this object. For
NeXus data read from a file, this will be a group of class NXroot, but
if the NeXus tree was defined interactively, it can be any valid
NXgroup.
nxfile : NeXusTree
The file handle of the root object of the NeXus tree containing this
object.
filename : string
The file name of NeXus object's tree file handle.
attrs : dict
A dictionary of the NeXus object's attributes.
Methods
-------
dir(self, attrs=False, recursive=False):
Print the group directory.
The directory is a list of NeXus objects within this group, either NeXus
groups or NXfield data. If 'attrs' is True, NXfield attributes are
displayed. If 'recursive' is True, the contents of child groups are also
displayed.
tree:
Return the object's tree as a string.
It invokes the 'dir' method with both 'attrs' and 'recursive'
set to True. Note that this is defined as a property attribute and
does not require parentheses.
save(self, filename, format='w5')
Save the NeXus group into a file
The object is wrapped in an NXroot group (with name 'root') and an
NXentry group (with name 'entry'), if necessary, in order to produce
a valid NeXus file.
"""
_class = "unknown"
_name = "unknown"
_group = None
_file = None
_infile = False
_saved = False
_changed = True
def __str__(self):
return "%s:%s"%(self.nxclass,self.nxname)
def __repr__(self):
return "NXobject('%s','%s')"%(self.nxclass,self.nxname)
def _setattrs(self, attrs):
for k,v in attrs.items():
self._attrs[k] = v
def _str_name(self,indent=0):
if self.nxclass == 'NXfield':
return " "*indent+self.nxname
else:
return " "*indent+self.nxname+':'+self.nxclass
def _str_value(self,indent=0):
return ""
def _str_attrs(self,indent=0):
names = self.attrs.keys()
names.sort()
result = []
for k in names:
result.append(" "*indent+"@%s = %s"%(k,self.attrs[k].nxdata))
return "\n".join(result)
def _str_tree(self,indent=0,attrs=False,recursive=False):
"""
Print current object and possibly children.
"""
result = [self._str_name(indent=indent)]
if attrs and self.attrs:
result.append(self._str_attrs(indent=indent+2))
# Print children
entries = self.entries
if entries:
names = entries.keys()
names.sort()
if recursive:
for k in names:
result.append(entries[k]._str_tree(indent=indent+2,
attrs=attrs, recursive=True))
else:
for k in names:
result.append(entries[k]._str_name(indent=indent+2))
result
return "\n".join(result)
def walk(self):
if False: yield
def dir(self,attrs=False,recursive=False):
"""
Print the object directory.
The directory is a list of NeXus objects within this object, either
NeXus groups or NXfields. If 'attrs' is True, NXfield attributes are
displayed. If 'recursive' is True, the contents of child groups are
also displayed.
"""
print self._str_tree(attrs=attrs,recursive=recursive)
@property
def tree(self):
"""
Return the directory tree as a string.
The tree contains all child objects of this object and their children.
It invokes the 'dir' method with both 'attrs' and 'recursive' set
to True.
"""
return self._str_tree(attrs=True,recursive=True)
def __enter__(self):
"""
Open the datapath for reading or writing.
Note: the results are undefined if you try accessing
more than one slab at a time. Don't nest your
"with data" statements!
"""
self._close_on_exit = not self.nxfile.isopen
self.nxfile.open() # Force file open even if closed
self.nxfile.openpath(self.nxpath)
self._incontext = True
return self.nxfile
def __exit__(self, type, value, traceback):
"""
Close the file associated with the data.
"""
self._incontext = False
if self._close_on_exit:
self.nxfile.close()
def save(self, filename=None, format='w5'):
"""
Save the NeXus object to a data file.
An error is raised if the object is an NXroot group from an external file
that has been opened as readonly and no file name is specified.
The object is wrapped in an NXroot group (with name 'root') and an
NXentry group (with name 'entry'), if necessary, in order to produce
a valid NeXus file.
Example
-------
>>> data = NXdata(sin(x), x)
>>> data.save('file.nxs')
>>> print data.nxroot.tree
root:NXroot
@HDF5_Version = 1.8.2
@NeXus_version = 4.2.1
@file_name = file.nxs
@file_time = 2012-01-20T13:14:49-06:00
entry:NXentry
data:NXdata
axis1 = float64(101)
signal = float64(101)
@axes = axis1
@signal = 1
>>> root.entry.data.axis1.units = 'meV'
>>> root.save()
"""
if filename:
if self.nxclass == "NXroot":
root = self
elif self.nxclass == "NXentry":
root = NXroot(self)
else:
root = NXroot(NXentry(self))
if root.nxfile: root.nxfile.close()
file = NeXusTree(filename, format)
file.writefile(root)
file.close()
root._file = NeXusTree(filename, 'rw')
root._setattrs(root._file.getattrs())
for node in root.walk():
node._infile = node._saved = True
elif self.nxfile:
for entry in self.nxroot.values():
entry.write()
else:
raise NeXusError("No output file specified")
@property
def infile(self):
"""
Returns True if the object has been created in a NeXus file.
"""
return self._infile
@property
def saved(self):
"""
Returns True if the object has been saved to a file.
"""
return self._saved
@property
def changed(self):
"""
Returns True if the object has been changed.
This property is for use by external scripts that need to track
which NeXus objects have been changed.
"""
return self._changed
def set_unchanged(self, recursive=False):
"""
Set an object's change status to unchanged.
"""
if recursive:
for node in self.walk():
node._changed = False
else:
self._changed = False
def _getclass(self):
return self._class
def _getname(self):
return self._name
def _setname(self, value):
self._name = str(value)
def _getgroup(self):
return self._group
def _getpath(self):
if self.nxgroup is None:
return ""
elif isinstance(self.nxgroup, NXroot):
return "/" + self.nxname
else:
return self.nxgroup._getpath()+"/"+self.nxname
def _getroot(self):
if self.nxgroup is None:
return self
elif isinstance(self.nxgroup, NXroot):
return self.nxgroup
else:
return self.nxgroup._getroot()
def _getfile(self):
return self.nxroot._file
def _getfilename(self):
return self.nxroot._file.filename
def _getattrs(self):
return self._attrs
nxclass = property(_getclass, doc="Class of NeXus object")
nxname = property(_getname, _setname, doc="Name of NeXus object")
nxgroup = property(_getgroup, doc="Parent group of NeXus object")
nxpath = property(_getpath, doc="Path to NeXus object")
nxroot = property(_getroot, doc="Root group of NeXus object's tree")
nxfile = property(_getfile, doc="File handle of NeXus object's tree")
attrs = property(_getattrs, doc="NeXus attributes for an object")
class NXfield(NXobject):
"""
A NeXus data field.
This is a subclass of NXobject that contains scalar, array, or string data
and associated NeXus attributes.
NXfield(value=None, name='unknown', dtype='', shape=[], attrs={}, file=None,
path=None, group=None, **attr)
Input Parameters
----------------
value : scalar value, Numpy array, or string
The numerical or string value of the NXfield, which is directly
accessible as the NXfield attribute 'nxdata'.
name : string
The name of the NXfield, which is directly accessible as the NXfield
attribute 'name'. If the NXfield is initialized as the attribute of a
parent object, the name is automatically set to the name of this
attribute.
dtype : string
The data type of the NXfield value, which is directly accessible as the
NXfield attribute 'dtype'. Valid input types correspond to standard
Numpy data types, using names defined by the NeXus API,
i.e., 'float32' 'float64'
'int8' 'int16' 'int32' 'int64'
'uint8' 'uint16' 'uint32' 'uint64'
'char'
If the data type is not specified, then it is determined automatically
by the data type of the 'value' parameter.
shape : list of ints
The dimensions of the NXfield data, which is accessible as the NXfield
attribute 'shape'. This corresponds to the shape of the Numpy array.
Scalars (numeric or string) are stored as Numpy zero-rank arrays,
for which shape=[].
attrs : dict
A dictionary containing NXfield attributes. The dictionary values should
all have class NXattr.
file : filename
The file from which the NXfield has been read.
path : string
The path to this object with respect to the root of the NeXus tree,
using the convention for unix file paths.
group : NXgroup or subclass of NXgroup
The parent NeXus object. If the NXfield is initialized as the attribute
of a parent group, this attribute is automatically set to the parent group.
Python Attributes
-----------------
nxclass : 'NXfield'
The class of the NXobject.
nxname : string
The name of the NXfield. Since it is possible to reference the same
Python object multiple times, this is not necessarily the same as the
object name. However, if the field is part of a NeXus tree, this will
be the attribute name within the tree.
nxgroup : NXgroup
The parent group containing this field within a NeXus tree. If the
field is not part of any NeXus tree, it will be set to None.
dtype : string or Numpy dtype
The data type of the NXfield value. If the NXfield has been initialized
but the data values have not been read in or defined, this is a string.
Otherwise, it is set to the equivalent Numpy dtype.
shape : list or tuple of ints
The dimensions of the NXfield data. If the NXfield has been initialized
but the data values have not been read in or defined, this is a list of
ints. Otherwise, it is set to the equivalent Numpy shape, which is a
tuple. Scalars (numeric or string) are stored as Numpy zero-rank arrays,
for which shape=().
attrs : dict
A dictionary of all the NeXus attributes associated with the field.
These are objects with class NXattr.
nxdata : scalar, Numpy array or string
The data value of the NXfield. This is normally initialized using the
'value' parameter (see above). If the NeXus data is contained
in a file and the size of the NXfield array is too large to be stored
in memory, the value is not read in until this attribute is directly
accessed. Even then, if there is insufficient memory, a value of None
will be returned. In this case, the NXfield array should be read as a
series of smaller slabs using 'get'.
nxdata_as('units') : scalar value or Numpy array
If the NXfield 'units' attribute has been set, the data values, stored
in 'nxdata', are returned after conversion to the specified units.
nxpath : string
The path to this object with respect to the root of the NeXus tree. For
NeXus data read from a file, this will be a group of class NXroot, but
if the NeXus tree was defined interactively, it can be any valid
NXgroup.
nxroot : NXgroup
The root object of the NeXus tree containing this object. For
NeXus data read from a file, this will be a group of class NXroot, but
if the NeXus tree was defined interactively, it can be any valid
NXgroup.
NeXus Attributes
----------------
NeXus attributes are stored in the 'attrs' dictionary of the NXfield, but
can usually be assigned or referenced as if they are Python attributes, as
long as the attribute name is not the same as one of those listed above.
This is to simplify typing in an interactive session and should not cause
any problems because there is no name clash with attributes so far defined
within the NeXus standard. When writing modules, it is recommended that the
attributes always be referenced using the 'attrs' dictionary if there is
any doubt.
a) Assigning a NeXus attribute
In the example below, after assigning the NXfield, the following three
NeXus attribute assignments are all equivalent:
>>> entry.sample.temperature = NXfield(40.0)
>>> entry.sample.temperature.attrs['units'] = 'K'
>>> entry.sample.temperature.units = NXattr('K')
>>> entry.sample.temperature.units = 'K'
b) Referencing a NeXus attribute
If the name of the NeXus attribute is not the same as any of the Python
attributes listed above, or one of the methods listed below, or any of the
attributes defined for Numpy arrays, they can be referenced as if they were
a Python attribute of the NXfield. However, it is only possible to reference
attributes with one of the proscribed names using the 'attrs' dictionary.
>>> entry.sample.temperature.tree = 10.0
>>> entry.sample.temperature.tree
temperature = 40.0
@tree = 10.0
@units = K
>>> entry.sample.temperature.attrs['tree']
NXattr(10.0)
Numerical Operations on NXfields
--------------------------------
NXfields usually consist of arrays of numeric data with associated
meta-data, the NeXus attributes. The exception is when they contain
character strings. This makes them similar to Numpy arrays, and this module
allows the use of NXfields in numerical operations in the same way as Numpy
ndarrays. NXfields are technically not a sub-class of the ndarray class, but
most Numpy operations work on NXfields, returning either another NXfield or,
in some cases, an ndarray that can easily be converted to an NXfield.
>>> x = NXfield((1.0,2.0,3.0,4.0))
>>> print x+1
[ 2. 3. 4. 5.]
>>> print 2*x
[ 2. 4. 6. 8.]
>>> print x/2
[ 0.5 1. 1.5 2. ]
>>> print x**2
[ 1. 4. 9. 16.]
>>> print x.reshape((2,2))
[[ 1. 2.]
[ 3. 4.]]
>>> y = NXfield((0.5,1.5,2.5,3.5))
>>> x+y
NXfield(name=x,value=[ 1.5 3.5 5.5 7.5])
>>> x*y
NXfield(name=x,value=[ 0.5 3. 7.5 14. ])
>>> (x+y).shape
(4,)
>>> (x+y).dtype
dtype('float64')
All these operations return valid NXfield objects containing the same
attributes as the first NXobject in the expression. The 'reshape' and
'transpose' methods also return NXfield objects.
It is possible to use the standard slice syntax.
>>> x=NXfield(np.linspace(0,10,11))
>>> x
NXfield([ 0. 1. 2. ..., 8. 9. 10.])
>>> x[2:5]
NXfield([ 2. 3. 4.])
In addition, it is possible to use floating point numbers as the slice
indices. If one of the indices is not integer, both indices are used to
extract elements in the array with values between the two index values.
>>> x=NXfield(np.linspace(0,100.,11))
>>> x
NXfield([ 0. 10. 20. ..., 80. 90. 100.])
>>> x[20.:50.]
NXfield([ 20. 30. 40. 50.])
The standard Numpy ndarray attributes and methods will also work with
NXfields, but will return scalars or Numpy arrays.
>>> x.size
4
>>> x.sum()
10.0
>>> x.max()
4.0
>>> x.mean()
2.5
>>> x.var()
1.25
>>> x.reshape((2,2)).sum(1)
array([ 3., 7.])
Finally, NXfields are cast as ndarrays for operations that require them.
The returned value will be the same as for the equivalent ndarray
operation, e.g.,
>>> np.sin(x)
array([ 0.84147098, 0.90929743, 0.14112001, -0.7568025 ])
>>> np.sqrt(x)
array([ 1. , 1.41421356, 1.73205081, 2. ])
Methods
-------
dir(self, attrs=False):
Print the NXfield specification.
This outputs the name, dimensions and data type of the NXfield.
If 'attrs' is True, NXfield attributes are displayed.
tree:
Return the NXfield's tree.
It invokes the 'dir' method with both 'attrs' and 'recursive'
set to True. Note that this is defined as a property attribute and
does not require parentheses.
save(self, filename, format='w5')
Save the NXfield into a file wrapped in a NXroot group and NXentry group
with default names. This is equivalent to
>>> NXroot(NXentry(NXfield(...))).save(filename)
Examples
--------
>>> x = NXfield(np.linspace(0,2*np.pi,101), units='degree')
>>> phi = x.nxdata_as(units='radian')
>>> y = NXfield(np.sin(phi))
# Read a Ni x Nj x Nk array one vector at a time
>>> with root.NXentry[0].data.data as slab:
Ni,Nj,Nk = slab.shape
size = [1,1,Nk]
for i in range(Ni):
for j in range(Nj):
value = slab.get([i,j,0],size)
"""
def __init__(self, value=None, name='field', dtype=None, shape=(), group=None,
attrs={}, **attr):
if isinstance(value, list) or isinstance(value, tuple):
value = np.array(value)
self._value = value
self._class = 'NXfield'
self._name = name.replace(' ','_')
self._group = group
self._dtype = dtype
if dtype == 'char':
self._dtype = 'char'
elif dtype in np.typeDict:
self._dtype = np.dtype(dtype)
elif dtype:
raise NeXusError("Invalid data type: %s" % dtype)
self._shape = tuple(shape)
# Append extra keywords to the attribute list
self._attrs = AttrDict()
for key in attr.keys():
attrs[key] = attr[key]
# Convert NeXus attributes to python attributes
self._setattrs(attrs)
if 'units' in attrs:
units = attrs['units']
else:
units = None
self._incontext = False
del attrs
if value is not None and dtype == 'char': value = str(value)
self._setdata(value)
self._saved = False
self._changed = True
def __repr__(self):
if self._value is not None:
if str(self.dtype) == 'char':
return "NXfield('%s')" % str(self)
else:
return "NXfield(%s)" % self._str_value()
else:
return "NXfield(dtype=%s,shape=%s)" % (self.dtype,self.shape)
def __getattr__(self, name):
"""
Enable standard numpy ndarray attributes if not otherwise defined.
"""
if name in _npattrs:
return self.nxdata.__getattribute__(name)
elif name in self.attrs:
return self.attrs[name].nxdata
raise KeyError(name+" not in "+self.nxname)
def __setattr__(self, name, value):
"""
Add an attribute to the NXfield 'attrs' dictionary unless the attribute
name starts with 'nx' or '_', or unless it is one of the standard Python
attributes for the NXfield class.
"""
if name.startswith('_') or name.startswith('nx'):
object.__setattr__(self, name, value)
elif isinstance(value, NXattr):
self._attrs[name] = value
self._saved = False
self._changed = True
else:
self._attrs[name] = NXattr(value)
self._saved = False
self._changed = True
def __getitem__(self, index):
"""
Returns a slice from the NXfield.
In most cases, the slice values are applied to the NXfield nxdata array
and returned within an NXfield object with the same metadata. However,
if the array is one-dimensional and the index start and stop values
are real, the nxdata array is returned with values between those limits.
This is to allow axis arrays to be limited by their actual value. This
real-space slicing should only be used on monotonically increasing (or
decreasing) one-dimensional arrays.
"""
if isinstance(index, slice) and \
(isinstance(index.start, float) or isinstance(index.stop, float)):
index = slice(self.index(index.start), self.index(index.stop,max=True)+1)
if self._value is not None:
result = self.nxdata.__getitem__(index)
else:
offset = np.zeros(len(self.shape),dtype=int)
size = np.array(self.shape)
if isinstance(index, int):
offset[0] = index
size[0] = 1
else:
if isinstance(index, slice): index = [index]
i = 0
for ind in index:
if isinstance(ind, int):
offset[i] = ind
size[i] = 1
else:
if ind.start: offset[i] = ind.start
if ind.stop: size[i] = ind.stop - offset[i]
i = i + 1
try:
result = self.get(offset, size)
except ValueError:
result = self.nxdata.__getitem__(index)
return NXfield(result, name=self.nxname, attrs=self.attrs)
def __setitem__(self, index, value):
"""
Assign a slice to the NXfield.
"""
if self._value is not None:
self.nxdata[index] = value
self._saved = False
self._changed = True
else:
raise NeXusError("NXfield dataspace not yet allocated")
def __deepcopy__(self, memo):
dpcpy = self.__class__()
memo[id(self)] = dpcpy
dpcpy._value = copy(self._value)
dpcpy._name = copy(self.nxname)
dpcpy._dtype = copy(self.dtype)
dpcpy._shape = copy(self.shape)
for k, v in self.attrs.items():
dpcpy.attrs[k] = copy(v)
return dpcpy
def __len__(self):
"""
Return the length of the NXfield data.
"""
return np.prod(self.shape)
def index(self, value, max=False):
"""
Return the index of the NXfield nxdata array that is greater than or equal to the value.
If max, then return the index that is less than or equal to the value.
This should only be used on one-dimensional monotonically increasing arrays.
"""
if max:
return len(self.nxdata)-len(self.nxdata[self.nxdata>=value])
else:
return len(self.nxdata[self.nxdata<value])
def __array__(self):
"""
Cast the NXfield as an array when it is expected by numpy
"""
return self.nxdata
def __eq__(self, other):
"""
Return true if the values of the NXfield are the same.
"""
if isinstance(other, NXfield):
if isinstance(self.nxdata, np.ndarray) and isinstance(other.nxdata, np.ndarray):
return all(self.nxdata == other.nxdata)
else:
return self.nxdata == other.nxdata
else:
return False
def __ne__(self, other):
"""
Return true if the values of the NXfield are not the same.
"""
if isinstance(other, NXfield):
if isinstance(self.nxdata, np.ndarray) and isinstance(other.nxdata, np.ndarray):
return any(self.nxdata != other.nxdata)
else:
return self.nxdata != other.nxdata
else:
return True
def __add__(self, other):
"""
Return the sum of the NXfield and another NXfield or number.
"""
if isinstance(other, NXfield):
return NXfield(value=self.nxdata+other.nxdata, name=self.nxname,
attrs=self.attrs)
else:
return NXfield(value=self.nxdata+other, name=self.nxname,
attrs=self.attrs)
def __radd__(self, other):
"""
Return the sum of the NXfield and another NXfield or number.
This variant makes __add__ commutative.
"""
return self.__add__(other)
def __sub__(self, other):
"""
Return the NXfield with the subtraction of another NXfield or number.
"""
if isinstance(other, NXfield):
return NXfield(value=self.nxdata-other.nxdata, name=self.nxname,
attrs=self.attrs)
else:
return NXfield(value=self.nxdata-other, name=self.nxname,
attrs=self.attrs)
def __mul__(self, other):
"""
Return the product of the NXfield and another NXfield or number.
"""
if isinstance(other, NXfield):
return NXfield(value=self.nxdata*other.nxdata, name=self.nxname,
attrs=self.attrs)
else:
return NXfield(value=self.nxdata*other, name=self.nxname,
attrs=self.attrs)
def __rmul__(self, other):
"""
Return the product of the NXfield and another NXfield or number.
This variant makes __mul__ commutative.
"""
return self.__mul__(other)
def __div__(self, other):
"""
Return the NXfield divided by another NXfield or number.
"""
if isinstance(other, NXfield):
return NXfield(value=self.nxdata/other.nxdata, name=self.nxname,
attrs=self.attrs)
else:
return NXfield(value=self.nxdata/other, name=self.nxname,
attrs=self.attrs)
def __rdiv__(self, other):
"""
Return the inverse of the NXfield divided by another NXfield or number.
"""
if isinstance(other, NXfield):
return NXfield(value=other.nxdata/self.nxdata, name=self.nxname,
attrs=self.attrs)
else:
return NXfield(value=other/self.nxdata, name=self.nxname,
attrs=self.attrs)
def __pow__(self, power):
"""
Return the NXfield raised to the specified power.
"""
return NXfield(value=pow(self.nxdata,power), name=self.nxname,
attrs=self.attrs)
def reshape(self, shape):
"""
Returns an NXfield with the specified shape.
"""
return NXfield(value=self.nxdata.reshape(shape), name=self.nxname,
attrs=self.attrs)
def transpose(self):
"""
Returns an NXfield containing the transpose of the data array.
"""
return NXfield(value=self.nxdata.transpose(), name=self.nxname,
attrs=self.attrs)
@property
def T(self):
return self.transpose()
def centers(self):
"""
Returns an NXfield with the centers of a single axis
assuming it contains bin boundaries.
"""
return NXfield((self.nxdata[:-1]+self.nxdata[1:])/2,
name=self.nxname,attrs=self.attrs)
def read(self):
"""
Read the NXfield, including attributes, from the NeXus file.
The data values are read provided they do not exceed NX_MEMORY. In that
case, the data have to be read in as slabs using the get method.
"""
if self.nxfile:
with self as path:
self._setattrs(path.getattrs())
shape, dtype = path.getinfo()
if dtype == 'char':
self._value = path.getdata()
elif np.prod(shape) * np.dtype(dtype).itemsize <= NX_MEMORY*1024*1024:
self._value = path.getdata()
else:
raise MemoryError('Data size larger than NX_MEMORY=%s MB' % NX_MEMORY)
self._shape = tuple(shape)
self._dtype = dtype
if dtype == 'char':
self._dtype = 'char'
elif dtype in np.typeDict:
self._dtype = np.dtype(dtype)
self._infile = self._saved = self._changed = True
else:
raise IOError("Data is not attached to a file")
def write(self):
"""
Write the NXfield, including attributes, to the NeXus file.
"""
if self.nxfile:
if self.nxfile.mode == napi.ACC_READ:
raise NeXusError("NeXus file is readonly")
if not self.infile:
shape = self.shape
if shape == (): shape = (1,)
with self.nxgroup as path:
if np.prod(shape) > 10000:
# Compress the fastest moving dimension of large datasets
slab_dims = np.ones(len(shape),'i')
if shape[-1] < 100000:
slab_dims[-1] = shape[-1]
else:
slab_dims[-1] = 100000
path.compmakedata(self.nxname, self.dtype, shape, 'lzw',
slab_dims)
else:
# Don't use compression for small datasets
path.makedata(self.nxname, self.dtype, shape)
self._infile = True
if not self.saved:
with self as path:
path._writeattrs(self.attrs)
value = self.nxdata
if value is not None:
path.putdata(value)
self._saved = True
else:
raise IOError("Data is not attached to a file")
def get(self, offset, size):
"""
Return a slab from the data array.
Offsets are 0-origin. Shape can be inferred from the data.
Offset and shape must each have one entry per dimension.
Corresponds to NXgetslab(handle,data,offset,shape)
"""
if self.nxfile:
with self as path:
value = path.getslab(offset,size)
return value
else:
raise IOError("Data is not attached to a file")
def put(self, data, offset, refresh=True):
"""
Put a slab into the data array.
Offsets are 0-origin. Shape can be inferred from the data.
Offset and shape must each have one entry per dimension.
Corresponds to NXputslab(handle,data,offset,shape)
"""
if self.nxfile:
if self.nxfile.mode == napi.ACC_READ:
raise NeXusError("NeXus file is readonly")
with self as path:
if isinstance(data, NXfield):
path.putslab(data.nxdata.astype(self.dtype), offset, data.shape)
else:
data = np.array(data)
path.putslab(data.astype(self.dtype), offset, data.shape)
if refresh: self.read()
else:
raise IOError("Data is not attached to a file")
def add(self, data, offset, refresh=True):
"""
Add a slab into the data array.
Calls get to read in existing data before adding the value
and calling put. It assumes that the two sets of data have
compatible data types.
"""
if isinstance(data, NXfield):
value = self.get(offset, data.shape)
self.put(data.nxdata.astype(self.dtype)+value, offset)
else:
value = self.get(offset, data.shape)
self.put(data.astype(self.dtype)+value, offset)
if refresh: self.refresh()
def refresh(self):
"""
Rereads the data from the file.
If put has been called, then nxdata is no longer synchronized with the
file making a refresh necessary. This will only be performed if nxdata
already stores the data.
"""
if self._value is not None:
if self.nxfile:
self._value = self.nxfile.readpath(self.nxpath)
self._infile = self._saved = True
else:
raise IOError("Data is not attached to a file")
def convert(self, units=""):
"""
Return the data in particular units.
"""
try:
import units
except ImportError:
raise NeXusError("No conversion utility available")
if self._value is not None:
return self._converter(self._value,units)
else:
return None
def __str__(self):
"""
If value is loaded, return the value as a string. If value is
not loaded, return the empty string. Only the first view values
for large arrays will be printed.
"""
if self._value is not None:
return str(self._value)
return ""
def _str_value(self,indent=0):
v = str(self)
if '\n' in v:
v = '\n'.join([(" "*indent)+s for s in v.split('\n')])
return v
def _str_tree(self,indent=0,attrs=False,recursive=False):
dims = 'x'.join([str(n) for n in self.shape])
s = str(self)
if '\n' in s or s == "":
s = "%s(%s)"%(self.dtype, dims)
v=[" "*indent + "%s = %s"%(self.nxname, s)]
if attrs and self.attrs: v.append(self._str_attrs(indent=indent+2))
return "\n".join(v)
def walk(self):
yield self
def _getaxes(self):
"""
Return a list of NXfields containing axes.
Only works if the NXfield has the 'axes' attribute
"""
try:
return [getattr(self.nxgroup,name) for name in _readaxes(self.axes)]
except KeyError:
return None
def _getdata(self):
"""
Return the data if it is not larger than NX_MEMORY.
"""
if self._value is None:
if self.nxfile:
if str(self.dtype) == 'char':
self._value = self.nxfile.readpath(self.nxpath)
elif np.prod(self.shape) * np.dtype(self.dtype).itemsize <= NX_MEMORY*1024*1024:
self._value = self.nxfile.readpath(self.nxpath)
else:
raise MemoryError('Data size larger than NX_MEMORY=%s MB' % NX_MEMORY)
self._saved = True
else:
return None
return self._value
def _setdata(self, value):
if value is not None:
if str(self._dtype) == 'char' or isinstance(value,str):
self._value = str(value)
self._shape = (len(self._value),)
self._dtype = 'char'
else:
if self.dtype in np.typeDict:
self._value = np.array(value,self.dtype)
else:
self._value = np.array(value)
self._shape = self._value.shape
self._dtype = self._value.dtype
self._saved = False
self._changed = True
def _getdtype(self):
return self._dtype
def _getshape(self):
return self._shape
def _getsize(self):
return len(self)
nxdata = property(_getdata,_setdata,doc="The data values")
nxaxes = property(_getaxes,doc="The plotting axes")
dtype = property(_getdtype,doc="Data type of NeXus field")
shape = property(_getshape,doc="Shape of NeXus field")
size = property(_getsize,doc="Size of NeXus field")
SDS = NXfield # For backward compatibility
def _fixaxes(signal, axes):
"""
Remove length-one dimensions from plottable data
"""
shape = list(signal.shape)
while 1 in shape: shape.remove(1)
newaxes = []
for axis in axes:
if axis.size > 1: newaxes.append(axis)
return signal.nxdata.view().reshape(shape), newaxes
class PylabPlotter(object):
"""
Matplotlib plotter class for NeXus data.
"""
def plot(self, signal, axes, title, errors, fmt,
xmin, xmax, ymin, ymax, zmin, zmax, **opts):
"""
Plot the data entry.
Raises NeXusError if the data cannot be plotted.
"""
try:
import matplotlib.pyplot as plt
except ImportError:
raise NeXusError("Default plotting package (matplotlib) not available.")
over = False
if "over" in opts.keys():
if opts["over"]: over = True
del opts["over"]
log = logx = logy = False
if "log" in opts.keys():
if opts["log"]: log = True
del opts["log"]
if "logy" in opts.keys():
if opts["logy"]: logy = True
del opts["logy"]
if "logx" in opts.keys():
if opts["logx"]: logx = True
del opts["logx"]
if over:
plt.autoscale(enable=False)
else:
plt.autoscale(enable=True)
plt.clf()
# Provide a new view of the data if there is a dimension of length 1
if 1 in signal.shape:
data, axes = _fixaxes(signal, axes)
else:
data = signal.nxdata
# Find the centers of the bins for histogrammed data
axis_data = centers(data, axes)
#One-dimensional Plot
if len(data.shape) == 1:
plt.ioff()
if hasattr(signal, 'units'):
if not errors and signal.units == 'counts':
errors = NXfield(np.sqrt(data))
if errors:
ebars = errors.nxdata
plt.errorbar(axis_data[0], data, ebars, fmt=fmt, **opts)
else:
plt.plot(axis_data[0], data, fmt, **opts)
if not over:
ax = plt.gca()
xlo, xhi = ax.set_xlim(auto=True)
ylo, yhi = ax.set_ylim(auto=True)
if xmin: xlo = xmin
if xmax: xhi = xmax
ax.set_xlim(xlo, xhi)
if ymin: ylo = ymin
if ymax: yhi = ymax
ax.set_ylim(ylo, yhi)
if logx: ax.set_xscale('symlog')
if log or logy: ax.set_yscale('symlog')
plt.xlabel(label(axes[0]))
plt.ylabel(label(signal))
plt.title(title)
plt.ion()
#Two dimensional plot
else:
from matplotlib.image import NonUniformImage
from matplotlib.colors import LogNorm
if len(data.shape) > 2:
slab = [slice(None), slice(None)]
for _dim in data.shape[2:]:
slab.append(0)
data = data[slab].view().reshape(data.shape[:2])
print "Warning: Only the top 2D slice of the data is plotted"
x = axis_data[0]
y = axis_data[1]
if not zmin: zmin = np.min(data)
if not zmax: zmax = np.max(data)
z = np.clip(data,zmin,zmax).T
if log:
opts["norm"] = LogNorm()
if z.min() <= 0 and np.issubdtype(z[0,0],int):
z = np.clip(z,0.1,zmax)
ax = plt.gca()
extent = (x[0],x[-1],y[0],y[-1])
im = NonUniformImage(ax, extent=extent, origin=None, **opts)
im.set_data(x,y,z)
ax.images.append(im)
xlo, xhi = ax.set_xlim(x[0],x[-1])
ylo, yhi = ax.set_ylim(y[0],y[-1])
if xmin:
xlo = xmin
else:
xlo = x[0]
if xmax:
xhi = xmax
else:
xhi = x[-1]
if ymin:
yhi = ymin
else:
yhi = y[0]
if ymax:
yhi = ymax
else:
yhi = y[-1]
ax.set_xlim(xlo, xhi)
ax.set_ylim(ylo, yhi)
plt.xlabel(label(axes[0]))
plt.ylabel(label(axes[1]))
plt.title(title)
plt.colorbar(im)
plt.gcf().canvas.draw_idle()
@staticmethod
def show():
import matplotlib.pyplot as plt
plt.show()
class NXgroup(NXobject):
"""
A NeXus group object.
This is a subclass of NXobject and is the base class for the specific
NeXus group classes, e.g., NXentry, NXsample, NXdata.
NXgroup(*items, **opts)
Parameters
----------
The NXgroup parameters consist of a list of positional and/or keyword
arguments.
Positional Arguments : These must be valid NeXus objects, either an NXfield
or a NeXus group. These are added without modification as children of this
group.
Keyword Arguments : Apart from a list of special keywords shown below,
keyword arguments are used to add children to the group using the keywords
as attribute names. The values can either be valid NXfields or NXgroups,
in which case the 'name' attribute is changed to the keyword, or they
can be numerical or string data, which are converted to NXfield objects.
Special Keyword Arguments:
name : string
The name of the NXgroup, which is directly accessible as the NXgroup
attribute 'name'. If the NXgroup is initialized as the attribute of
a parent group, the name is automatically set to the name of this
attribute. If 'nxclass' is specified and has the usual prefix 'NX',
the default name is the class name without this prefix.
nxclass : string
The class of the NXgroup.
entries : dict
A dictionary containing a list of group entries. This is an
alternative way of adding group entries to the use of keyword
arguments.
file : filename
The file from which the NXfield has been read.
path : string
The path to this object with respect to the root of the NeXus tree,
using the convention for unix file paths.
group : NXobject (NXgroup or subclass of NXgroup)
The parent NeXus group, which is accessible as the group attribute
'group'. If the group is initialized as the attribute of
a parent group, this is set to the parent group.
Python Attributes
-----------------
nxclass : string
The class of the NXobject.
nxname : string
The name of the NXfield.
entries : dictionary
A dictionary of all the NeXus objects contained within an NXgroup.
attrs : dictionary
A dictionary of all the NeXus attributes, i.e., attribute with class NXattr.
entries : dictionary
A dictionary of all the NeXus objects contained within the group.
attrs : dictionary
A dictionary of all the group's NeXus attributes, which all have the
class NXattr.
nxpath : string
The path to this object with respect to the root of the NeXus tree. For
NeXus data read from a file, this will be a group of class NXroot, but
if the NeXus tree was defined interactively, it can be any valid
NXgroup.
nxroot : NXgroup
The root object of the NeXus tree containing this object. For
NeXus data read from a file, this will be a group of class NXroot, but
if the NeXus tree was defined interactively, it can be any valid
NXgroup.
NeXus Group Entries
-------------------
Just as in a NeXus file, NeXus groups can contain either data or other
groups, represented by NXfield and NXgroup objects respectively. To
distinguish them from regular Python attributes, all NeXus objects are
stored in the 'entries' dictionary of the NXgroup. However, they can usually
be assigned or referenced as if they are Python attributes, i.e., using the
dictionary name directly as the group attribute name, as long as this name
is not the same as one of the Python attributes defined above or as one of
the NXfield Python attributes.
a) Assigning a NeXus object to a NeXus group
In the example below, after assigning the NXgroup, the following three
NeXus object assignments to entry.sample are all equivalent:
>>> entry.sample = NXsample()
>>> entry.sample['temperature'] = NXfield(40.0)
>>> entry.sample.temperature = NXfield(40.0)
>>> entry.sample.temperature = 40.0
>>> entry.sample.temperature
NXfield(40.0)
If the assigned value is not a valid NXobject, then it is cast as an NXfield
with a type determined from the Python data type.
>>> entry.sample.temperature = 40.0
>>> entry.sample.temperature
NXfield(40.0)
>>> entry.data.data.x=np.linspace(0,10,11).astype('float32')
>>> entry.data.data.x
NXfield([ 0. 1. 2. ..., 8. 9. 10.])
b) Referencing a NeXus object in a NeXus group
If the name of the NeXus object is not the same as any of the Python
attributes listed above, or the methods listed below, they can be referenced
as if they were a Python attribute of the NXgroup. However, it is only possible
to reference attributes with one of the proscribed names using the group
dictionary, i.e.,
>>> entry.sample.tree = 100.0
>>> print entry.sample.tree
sample:NXsample
tree = 100.0
>>> entry.sample['tree']
NXfield(100.0)
For this reason, it is recommended to use the group dictionary to reference
all group objects within Python scripts.
NeXus Attributes
----------------
NeXus attributes are not currently used much with NXgroups, except for the
root group, which has a number of global attributes to store the file name,
file creation time, and NeXus and HDF version numbers. However, the
mechanism described for NXfields works here as well. All NeXus attributes
are stored in the 'attrs' dictionary of the NXgroup, but can be referenced
as if they are Python attributes as long as there is no name clash.
>>> entry.sample.temperature = 40.0
>>> entry.sample.attrs['tree'] = 10.0
>>> print entry.sample.tree
sample:NXsample
@tree = 10.0
temperature = 40.0
>>> entry.sample.attrs['tree']
NXattr(10.0)
Methods
-------
insert(self, NXobject, name='unknown'):
Insert a valid NXobject (NXfield or NXgroup) into the group.
If NXobject has a 'name' attribute and the 'name' keyword is not given,
then the object is inserted with the NXobject name.
makelink(self, NXobject):
Add the NXobject to the group entries as a link (NXlink).
dir(self, attrs=False, recursive=False):
Print the group directory.
The directory is a list of NeXus objects within this group, either NeXus
groups or NXfield data. If 'attrs' is True, NXfield attributes are
displayed. If 'recursive' is True, the contents of child groups are also
displayed.
tree:
Return the group tree.
It invokes the 'dir' method with both 'attrs' and 'recursive'
set to True.
save(self, filename, format='w5')
Save the NeXus group into a file
The object is wrapped in an NXroot group (with name 'root') and an
NXentry group (with name 'entry'), if necessary, in order to produce
a valid NeXus file.
Examples
--------
>>> x = NXfield(np.linspace(0,2*np.pi,101), units='degree')
>>> entry = NXgroup(x, name='entry', nxclass='NXentry')
>>> entry.sample = NXgroup(temperature=NXfield(40.0,units='K'),
nxclass='NXsample')
>>> print entry.sample.tree
sample:NXsample
temperature = 40.0
@units = K
Note: All the currently defined NeXus classes are defined as subclasses
of the NXgroup class. It is recommended that these are used
directly, so that the above examples become:
>>> entry = NXentry(x)
>>> entry.sample = NXsample(temperature=NXfield(40.0,units='K'))
or
>>> entry.sample.temperature = 40.0
>>> entry.sample.temperature.units='K'
"""
# Plotter to use for plot calls
_plotter = PylabPlotter()
def __init__(self, *items, **opts):
if "name" in opts.keys():
self._name = opts["name"].replace(' ','_')
del opts["name"]
self._entries = {}
if "entries" in opts.keys():
for k,v in opts["entries"].items():
setattr(self, k, v)
del opts["entries"]
self._attrs = AttrDict()
if "attrs" in opts.keys():
self._setattrs(opts["attrs"])
del opts["attrs"]
if "nxclass" in opts.keys():
self._class = opts["nxclass"]
del opts["nxclass"]
if "group" in opts.keys():
self._group = opts["group"]
del opts["group"]
for k,v in opts.items():
setattr(self, k, v)
if self.nxclass.startswith("NX"):
if self.nxname == "unknown": self._name = self.nxclass[2:]
try: # If one exists, set the class to a valid NXgroup subclass
self.__class__ = globals()[self.nxclass]
except KeyError:
pass
for item in items:
try:
setattr(self, item.nxname, item)
except AttributeError:
raise NeXusError("Non-keyword arguments must be valid NXobjects")
self._saved = False
self._changed = True
# def __cmp__(self, other):
# """Sort groups by their distances or names."""
# try:
# return cmp(self.distance, other.distance)
# except KeyError:
# return cmp(self.nxname, other.nxname)
def __repr__(self):
return "%s('%s')" % (self.__class__.__name__,self.nxname)
def _str_value(self,indent=0):
return ""
def walk(self):
yield self
for node in self.entries.values():
for child in node.walk():
yield child
def __getattr__(self, key):
"""
Provide direct access to groups via nxclass name.
"""
if key.startswith('NX'):
return self.component(key)
elif key in self.entries:
return self.entries[key]
elif key in self.attrs:
return self.attrs[key].nxdata
raise KeyError(key+" not in "+self.nxclass+":"+self.nxname)
def __setattr__(self, name, value):
"""
Set an attribute as an object or regular Python attribute.
It is assumed that attributes starting with 'nx' or '_' are regular
Python attributes. All other attributes are converted to valid NXobjects,
with class NXfield, NXgroup, or a sub-class of NXgroup, depending on the
assigned value.
The internal value of the attribute name, i.e., 'name', is set to the
attribute name used in the assignment. The parent group of the
attribute, i.e., 'group', is set to the parent group of the attribute.
If the assigned value is a numerical (scalar or array) or string object,
it is converted to an object of class NXfield, whose attribute, 'nxdata',
is set to the assigned value.
"""
if name.startswith('_') or name.startswith('nx'):
object.__setattr__(self, name, value)
elif isinstance(value, NXattr):
self._attrs[name] = value
self._saved = False
self._changed = True
else:
self[name] = value
def __getitem__(self, index):
"""
Returns a slice from the NXgroup nxsignal attribute (if it exists) as
a new NXdata group, if the index is a slice object.
In most cases, the slice values are applied to the NXfield nxdata array
and returned within an NXfield object with the same metadata. However,
if the array is one-dimensional and the index start and stop values
are real, the nxdata array is returned with values between the limits
set by those axis values.
This is to allow axis arrays to be limited by their actual value. This
real-space slicing should only be used on monotonically increasing (or
decreasing) one-dimensional arrays.
"""
if isinstance(index, str): #i.e., requesting a dictionary value
return self._entries[index]
if not self.nxsignal:
raise NeXusError("No plottable signal")
if not hasattr(self,"nxclass"):
raise NeXusError("Indexing not allowed for groups of unknown class")
if isinstance(index, int):
axes = self.nxaxes
axes[0] = axes[0][index]
result = NXdata(self.nxsignal[index], axes)
if self.nxerrors: result.errors = self.errors[index]
elif isinstance(index, slice):
axes = self.nxaxes
axes[0] = axes[0][index]
if isinstance(index.start, float) or isinstance(index.stop, float):
index = slice(self.nxaxes[0].index(index.start),
self.nxaxes[0].index(index.stop,max=True)+1)
result = NXdata(self.nxsignal[index], axes)
if self.nxerrors: result.errors = self.errors[index]
else:
result = NXdata(self.nxsignal[index], axes)
if self.nxerrors: result.errors = self.errors[index]
else:
i = 0
slices = []
axes = self.nxaxes
for ind in index:
axes[i] = axes[i][ind]
if isinstance(ind, slice) and \
(isinstance(ind.start, float) or isinstance(ind.stop, float)):
slices.append(slice(self.nxaxes[i].index(ind.start),
self.nxaxes[i].index(ind.stop)))
else:
slices.append(ind)
i = i + 1
result = NXdata(self.nxsignal.__getitem__(tuple(slices)), axes)
if self.nxerrors: result.errors = self.errors.__getitem__(tuple(slices))
axes = []
for axis in result.nxaxes:
if len(axis) > 1: axes.append(axis)
result.nxsignal.axes = ":".join([axis.nxname for axis in axes])
if self.nxtitle:
result.title = self.nxtitle
return result
def __setitem__(self, key, value):
"""
Adds or modifies an item in the NeXus group.
"""
if key in self.entries:
infile = self._entries[key]._infile
if isinstance(self._entries[key], NXlink):
if self._entries[key].nxlink:
setattr(self._entries[key].nxlink.nxgroup, key, value)
return
attrs = self._entries[key].attrs
else:
infile = None
attrs = {}
if isinstance(value, NXlink):
self._entries[key] = value
elif isinstance(value, NXobject):
if value.nxgroup is not None:
memo = {}
value = deepcopy(value, memo)
value._attrs = copy(value._attrs)
value._group = self
value._name = key
self._entries[key] = value
else:
self._entries[key] = NXfield(value=value, name=key, group=self, attrs=attrs)
if infile is not None: self[key]._infile = infile
self._changed = True
def __deepcopy__(self, memo):
dpcpy = self.__class__()
memo[id(self)] = dpcpy
for k,v in self.items():
if isinstance(v, NXgroup):
dpcpy[k] = deepcopy(v, memo)
else:
dpcpy[k] = copy(v)
for k, v in self.attrs.items():
dpcpy.attrs[k] = copy(v)
return dpcpy
def keys(self):
"""
Returns the names of NeXus objects in the group.
"""
return self._entries.keys()
def values(self):
"""
Returns the values of NeXus objects in the group.
"""
return self._entries.values()
def items(self):
"""
Returns a list of the NeXus objects in the group as (key,value) pairs.
"""
return self._entries.items()
def has_key(self, name):
"""
Returns true if the NeXus object with the specified name is in the group.
"""
return self._entries.has_key(name)
def insert(self, value, name='unknown'):
"""
Adds an attribute to the group.
If it is not a valid NeXus object (NXfield or NXgroup), the attribute
is converted to an NXfield.
"""
if isinstance(value, NXobject):
if name == 'unknown': name = value.nxname
if name in self._entries:
raise NeXusError("'%s' already exists in group" % name)
value._group = self
self._entries[name] = value
else:
self._entries[name] = NXfield(value=value, name=name, group=self)
def makelink(self, target):
"""
Creates a linked NXobject within the group.
All attributes are inherited from the parent object including the name
"""
if isinstance(target, NXobject):
self[target.nxname] = NXlink(target=target, group=self)
else:
raise NeXusError("Link target must be an NXobject")
def read(self):
"""
Read the NXgroup and all its children from the NeXus file.
"""
if self.nxfile:
with self as path:
n, nxname, nxclass = path.getgroupinfo()
if nxclass != self.nxclass:
raise NeXusError("The NeXus group class does not match the file")
self._setattrs(path.getattrs())
entries = path.entries()
for name,nxclass in entries:
path = self.nxpath + '/' + name
if nxclass == 'SDS':
attrs = self.nxfile.getattrs()
if 'target' in attrs and attrs['target'] != path:
self._entries[name] = NXlinkfield(target=attrs['target'])
else:
self._entries[name] = NXfield(name=name)
else:
attrs = self.nxfile.getattrs()
if 'target' in attrs and attrs['target'] != path:
self._entries[name] = NXlinkgroup(name=name,
target=attrs['target'])
else:
self._entries[name] = NXgroup(nxclass=nxclass)
self._entries[name]._group = self
#Make sure non-linked variables are processed first.
for entry in self._entries.values():
for node in entry.walk():
if not isinstance(node, NXlink): node.read()
for entry in self._entries.values():
for node in entry.walk():
if isinstance(node, NXlink): node.read()
self._infile = self._saved = self._changed = True
else:
raise IOError("Data is not attached to a file")
def write(self):
"""
Write the NXgroup, including its children, to the NeXus file.
"""
if self.nxfile:
if self.nxfile.mode == napi.ACC_READ:
raise NeXusError("NeXus file is readonly")
if not self.infile:
with self.nxgroup as path:
path.makegroup(self.nxname, self.nxclass)
self._infile = True
with self as path:
path._writeattrs(self.attrs)
for entry in self.walk():
if entry is not self: entry.write()
self._infile = self._saved = True
else:
raise IOError("Group is not attached to a file")
def sum(self, axis=None):
"""
Return the sum of the NXdata group using the Numpy sum method
on the NXdata signal.
The result contains a copy of all the metadata contained in
the NXdata group.
"""
if not self.nxsignal:
raise NeXusError("No signal to sum")
if not hasattr(self,"nxclass"):
raise NeXusError("Summing not allowed for groups of unknown class")
if axis is None:
return self.nxsignal.sum()
else:
signal = NXfield(self.nxsignal.sum(axis), name=self.nxsignal.nxname)
axes = self.nxaxes
summedaxis = axes.pop(axis)
units = ""
if hasattr(summedaxis, "units"): units = summedaxis.units
signal.long_name = "Integral from %s to %s %s" % \
(summedaxis[0], summedaxis[-1], units)
average = NXfield(0.5*(summedaxis.nxdata[0]+summedaxis.nxdata[-1]),
name=summedaxis.nxname)
if units: average.units = units
result = NXdata(signal, axes, average)
if self.nxerrors:
errors = np.sqrt((self.nxerrors.nxdata**2).sum(axis))
result.errors = NXfield(errors, name="errors")
if self.nxtitle:
result.title = self.nxtitle
return result
def moment(self, order=1):
"""
Return an NXfield containing the moments of the NXdata group
assuming the signal is one-dimensional.
Currently, only the first moment has been defined. Eventually, the
order of the moment will be defined by the 'order' parameter.
"""
if not self.nxsignal:
raise NeXusError("No signal to calculate")
elif len(self.nxsignal.shape) > 1:
raise NeXusError("Operation only possible on one-dimensional signals")
elif order > 1:
raise NeXusError("Higher moments not yet implemented")
if not hasattr(self,"nxclass"):
raise NeXusError("Operation not allowed for groups of unknown class")
return (centers(self.nxsignal,self.nxaxes)*self.nxsignal).sum() \
/self.nxsignal.sum()
def component(self, nxclass):
"""
Find all child objects that have a particular class.
"""
return [E for _name,E in self.entries.items() if E.nxclass==nxclass]
def signals(self):
"""
Return a dictionary of NXfield's containing signal data.
The key is the value of the signal attribute.
"""
signals = {}
for obj in self.entries.values():
if 'signal' in obj.attrs:
signals[obj.nxsignal.nxdata] = obj
return signals
def _signal(self):
"""
Return the NXfield containing the signal data.
"""
for obj in self.entries.values():
if 'signal' in obj.attrs and str(obj.signal) == '1':
# if isinstance(self[obj.nxname],NXlink):
# return self[obj.nxname].nxlink
# else:
return self[obj.nxname]
return None
def _set_signal(self, signal):
"""
Setter for the signal attribute.
The argument should be a valid NXfield within the group.
"""
self[signal.nxname].signal = NXattr(1)
def _axes(self):
"""
Return a list of NXfields containing the axes.
"""
try:
return [getattr(self,name) for name in _readaxes(self.nxsignal.axes)]
except KeyError:
axes = {}
for obj in self.entries:
if 'axis' in getattr(self,obj).attrs:
axes[getattr(self,obj).axis] = getattr(self,obj)
return [axes[key] for key in sorted(axes.keys())]
def _set_axes(self, axes):
"""
Setter for the signal attribute.
The argument should be a list of valid NXfields within the group.
"""
if not isinstance(axes, list):
axes = [axes]
self.nxsignal.axes = NXattr(":".join([axis.nxname for axis in axes]))
def _errors(self):
"""
Return the NXfield containing the signal errors.
"""
try:
return self.entries['errors']
except KeyError:
return None
def _title(self):
"""
Return the title as a string.
If there is no title attribute in the string, the parent
NXentry group in the group's path is searched.
"""
title = self.nxpath
if 'title' in self.entries:
return str(self.title)
elif self.nxgroup:
if 'title' in self.nxgroup.entries:
return str(self.nxgroup.title)
return self.nxpath
def _getentries(self):
return self._entries
nxsignal = property(_signal, _set_signal, "Signal NXfield within group")
nxaxes = property(_axes, _set_axes, "List of axes within group")
nxerrors = property(_errors, "Errors NXfield within group")
nxtitle = property(_title, "Title for group plot")
entries = property(_getentries,doc="NeXus objects within group")
def plot(self, fmt='bo', xmin=None, xmax=None, ymin=None, ymax=None,
zmin=None, zmax=None, **opts):
"""
Plot data contained within the group.
The format argument is used to set the color and type of the
markers or lines for one-dimensional plots, using the standard
matplotlib syntax. The default is set to blue circles. All
keyword arguments accepted by matplotlib.pyplot.plot can be
used to customize the plot.
In addition to the matplotlib keyword arguments, the following
are defined:
log = True - plot the intensity on a log scale
logy = True - plot the y-axis on a log scale
logx = True - plot the x-axis on a log scale
over = True - plot on the current figure
Raises NeXusError if the data could not be plotted.
"""
group = self
if self.nxclass == "NXroot":
group = group.NXentry[0]
if group.nxclass == "NXentry":
try:
group = group.NXdata[0]
except IndexError:
raise NeXusError('No NXdata group found')
# Find a plottable signal
signal = group.nxsignal
if not signal:
raise NeXusError('No plottable signal defined')
# Find errors
errors= group.nxerrors
# Find the associated axes
axes = group.nxaxes
# Construct title
title = group.nxtitle
# Plot with the available plotter
group._plotter.plot(signal, axes, title, errors, fmt,
xmin, xmax, ymin, ymax, zmin, zmax, **opts)
def oplot(self, fmt='bo', **opts):
"""
Plot the data contained within the group over the current figure.
"""
self.plot(fmt=fmt, over=True, **opts)
def logplot(self, fmt='bo', xmin=None, xmax=None, ymin=None, ymax=None,
zmin=None, zmax=None, **opts):
"""
Plot the data intensity contained within the group on a log scale.
"""
self.plot(fmt=fmt, log=True,
xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
zmin=zmin, zmax=zmax, **opts)
class NXlink(NXobject):
"""
Class for NeXus linked objects.
The real object will be accessible by following the link attribute.
"""
_class = "NXlink"
def __init__(self, target=None, name='link', group=None):
self._group = group
self._class = "NXlink"
if isinstance(target, NXobject):
self._name = target.nxname
self._target = target.nxpath
self.nxlink.attrs["target"] = target.nxpath
if target.nxclass == "NXlink":
raise NeXusError("Cannot link to another NXlink object")
elif target.nxclass == "NXfield":
self.__class__ = NXlinkfield
else:
self.__class__ = NXlinkgroup
else:
self._name = name
self._target = target
def __getattr__(self, key):
try:
try:
return self.nxlink.__dict__[key]
except KeyError:
return self.nxlink.__getattr__(key)
except KeyError:
raise KeyError((key+" not in %s" % self._target))
def __setattr__(self, name, value):
if name.startswith('_') or name.startswith('nx'):
object.__setattr__(self, name, value)
elif self.nxlink:
self.nxlink.__setattr__(name, value)
def __repr__(self):
return "NXlink('%s')"%(self._target)
def __str__(self):
return str(self.nxlink)
def _str_tree(self, indent=0, attrs=False, recursive=False):
if self.nxlink:
return self.nxlink._str_tree(indent, attrs, recursive)
else:
return " "*indent+self.nxname+' -> '+self._target
def _getlink(self):
link = self.nxroot
if link:
try:
for level in self._target[1:].split('/'):
link = link.entries[level]
return link
except AttributeError:
return None
else:
return None
def _getattrs(self):
return self.nxlink.attrs
nxlink = property(_getlink, "Linked object")
attrs = property(_getattrs,doc="NeXus attributes for object")
def read(self):
"""
Read the linked NXobject.
"""
self.nxlink.read()
self._infile = self._saved = self._changed = True
class NXlinkfield(NXlink, NXfield):
"""
Class for a NeXus linked field.
The real field will be accessible by following the link attribute.
"""
def write(self):
"""
Write the linked NXfield.
"""
self.nxlink.write()
if not self.infile:
with self.nxlink as path:
target = path.getdataID()
with self.nxgroup as path:
path.makelink(target)
self._infile = self._saved = True
def get(self, offset, size):
"""
Get a slab from the data array.
Offsets are 0-origin. Shape can be inferred from the data.
Offset and shape must each have one entry per dimension.
This operation should be performed in a "with group.data"
conext.
Raises ValueError cannot convert units.
Corresponds to NXgetslab(handle,data,offset,shape)
"""
if self.nxfile:
with self.nxlink as path:
value = path.getslab(offset,size)
else:
raise IOError("Data is not attached to a file")
NXlinkdata = NXlinkfield # For backward compatibility
class NXlinkgroup(NXlink, NXgroup):
"""
Class for a NeXus linked group.
The real group will be accessible by following the link attribute.
"""
def write(self):
"""
Write the linked NXgroup.
"""
self.nxlink.write()
if not self.infile:
with self.nxlink as path:
target = path.getgroupID()
with self.nxgroup as path:
path.makelink(target)
self._infile = self._saved = True
def _getentries(self):
return self.nxlink.entries
entries = property(_getentries,doc="NeXus objects within group")
class NXentry(NXgroup):
"""
NXentry group. This is a subclass of the NXgroup class.
Each NXdata and NXmonitor object of the same name will be added
together, raising an NeXusError if any of the groups do not exist
in both NXentry groups or if any of the NXdata additions fail.
The resulting NXentry group contains a copy of all the other metadata
contained in the first group. Note that other extensible data, such
as the run duration, are not currently added together.
See the NXgroup documentation for more details.
"""
def __init__(self, *items, **opts):
self._class = "NXentry"
NXgroup.__init__(self, *items, **opts)
def __add__(self, other):
"""
Add two NXentry objects
"""
result = NXentry(entries=self.entries, attrs=self.attrs)
try:
names = [group.nxname for group in self.component("NXdata")]
for name in names:
if isinstance(other.entries[name], NXdata):
result.entries[name] = self.entries[name] + other.entries[name]
else:
raise KeyError
names = [group.nxname for group in self.component("NXmonitor")]
for name in names:
if isinstance(other.entries[name], NXmonitor):
result.entries[name] = self.entries[name] + other.entries[name]
else:
raise KeyError
return result
except KeyError:
raise NeXusError("Inconsistency between two NXentry groups")
def __sub__(self, other):
"""
Subtract two NXentry objects
"""
result = NXentry(entries=self.entries, attrs=self.attrs)
try:
names = [group.nxname for group in self.component("NXdata")]
for name in names:
if isinstance(other.entries[name], NXdata):
result.entries[name] = self.entries[name] - other.entries[name]
else:
raise KeyError
names = [group.nxname for group in self.component("NXmonitor")]
for name in names:
if isinstance(other.entries[name], NXmonitor):
result.entries[name] = self.entries[name] - other.entries[name]
else:
raise KeyError
return result
except KeyError:
raise NeXusError("Inconsistency between two NXentry groups")
class NXsubentry(NXentry):
"""
NXsubentry group. This is a subclass of the NXsubentry class.
See the NXgroup documentation for more details.
"""
def __init__(self, *items, **opts):
self._class = "NXsubentry"
NXgroup.__init__(self, *items, **opts)
class NXdata(NXgroup):
"""
NXdata group. This is a subclass of the NXgroup class.
The constructor assumes that the first argument contains the signal and
the second contains either the axis, for one-dimensional data, or a list
of axes, for multidimensional data. These arguments can either be NXfield
objects or Numpy arrays, which are converted to NXfield objects with default
names. Alternatively, the signal and axes NXfields can be defined using the
'nxsignal' and 'nxaxes' properties. See the examples below.
Various arithmetic operations (addition, subtraction, multiplication,
and division) have been defined for combining NXdata groups with other
NXdata groups, Numpy arrays, or constants, raising a NeXusError if the
shapes don't match. Data errors are propagated in quadrature if
they are defined, i.e., if the 'nexerrors' attribute is not None,
Attributes
----------
nxsignal : The NXfield containing the attribute 'signal' with value 1
nxaxes : A list of NXfields containing the signal axes
nxerrors : The NXfield containing the errors
Methods
-------
plot(self, fmt, over=False, log=False, logy=False, logx=False, **opts)
Plot the NXdata group using the defined signal and axes. Valid
Matplotlib parameters, specifying markers, colors, etc, can be
specified using format argument or through keyword arguments.
logplot(self, fmt, over=False, logy=False, logx=False, **opts)
Plot the NXdata group using the defined signal and axes with
the intensity plotted on a logarithmic scale. In one-dimensional
plots, this is the y-axis. In two-dimensional plots, it is the
color scale.
oplot(self, fmt, **opts)
Plot the NXdata group using the defined signal and axes over
the current plot.
moment(self, order=1)
Calculate moments of the NXdata group. This assumes that the
signal is one-dimenional. Currently, only the first moment is
implemented.
Examples
--------
There are three methods of creating valid NXdata groups with the
signal and axes NXfields defined according to the NeXus standard.
1) Create the NXdata group with Numpy arrays that will be assigned
default names.
>>> x = np.linspace(0, 2*np.pi, 101)
>>> line = NXdata(sin(x), x)
data:NXdata
signal = float64(101)
@axes = x
@signal = 1
axis1 = float64(101)
2) Create the NXdata group with NXfields that have their internal
names already assigned.
>>> x = NXfield(linspace(0,2*pi,101), name='x')
>>> y = NXfield(linspace(0,2*pi,101), name='y')
>>> X, Y = np.meshgrid(x, y)
>>> z = NXfield(sin(X) * sin(Y), name='z')
>>> entry = NXentry()
>>> entry.grid = NXdata(z, (x, y))
>>> grid.tree()
entry:NXentry
grid:NXdata
x = float64(101)
y = float64(101)
z = float64(101x101)
@axes = x:y
@signal = 1
3) Create the NXdata group with keyword arguments defining the names
and set the signal and axes using the nxsignal and nxaxes properties.
>>> x = linspace(0,2*pi,101)
>>> y = linspace(0,2*pi,101)
>>> X, Y = np.meshgrid(x, y)
>>> z = sin(X) * sin(Y)
>>> entry = NXentry()
>>> entry.grid = NXdata(z=sin(X)*sin(Y), x=x, y=y)
>>> entry.grid.nxsignal = entry.grid.z
>>> entry.grid.nxaxes = [entry.grid.x.entry.grid.y]
>>> grid.tree()
entry:NXentry
grid:NXdata
x = float64(101)
y = float64(101)
z = float64(101x101)
@axes = x:y
@signal = 1
"""
def __init__(self, signal=None, axes=None, *items, **opts):
self._class = "NXdata"
NXgroup.__init__(self, *items, **opts)
if signal is not None:
if isinstance(signal,NXfield):
if signal.nxname == "unknown": signal.nxname = "signal"
if "signal" not in signal.attrs: signal.signal = 1
self[signal.nxname] = signal
signalname = signal.nxname
else:
self["signal"] = signal
self["signal"].signal = 1
signalname = "signal"
if axes is not None:
if not isinstance(axes,tuple) and not isinstance(axes,list):
axes = [axes]
axisnames = {}
i = 0
for axis in axes:
i = i + 1
if isinstance(axis,NXfield):
if axis._name == "unknown": axis._name = "axis%s" % i
self[axis.nxname] = axis
axisnames[i] = axis.nxname
else:
axisname = "axis%s" % i
self[axisname] = axis
axisnames[i] = axisname
self[signalname].axes = ":".join(axisnames.values())
def __add__(self, other):
"""
Define a method for adding a NXdata group to another NXdata group
or to a number. Only the signal data is affected.
The result contains a copy of all the metadata contained in
the first NXdata group. The module checks that the dimensions are
compatible, but does not check that the NXfield names or values are
identical. This is so that spelling variations or rounding errors
do not make the operation fail. However, it is up to the user to
ensure that the results make sense.
"""
result = NXdata(entries=self.entries, attrs=self.attrs)
if isinstance(other, NXdata):
if self.nxsignal and self.nxsignal.shape == other.nxsignal.shape:
result.entries[self.nxsignal.nxname] = self.nxsignal + other.nxsignal
if self.nxerrors:
if other.nxerrors:
result.errors = np.sqrt(self.errors.nxdata**2+other.errors.nxdata**2)
else:
result.errors = self.errors
return result
elif isinstance(other, NXgroup):
raise NeXusError("Cannot add two arbitrary groups")
else:
result.entries[self.nxsignal.nxname] = self.nxsignal + other
result.entries[self.nxsignal.nxname].nxname = self.nxsignal.nxname
return result
def __sub__(self, other):
"""
Define a method for subtracting a NXdata group or a number from
the NXdata group. Only the signal data is affected.
The result contains a copy of all the metadata contained in
the first NXdata group. The module checks that the dimensions are
compatible, but does not check that the NXfield names or values are
identical. This is so that spelling variations or rounding errors
do not make the operation fail. However, it is up to the user to
ensure that the results make sense.
"""
result = NXdata(entries=self.entries, attrs=self.attrs)
if isinstance(other, NXdata):
if self.nxsignal and self.nxsignal.shape == other.nxsignal.shape:
result.entries[self.nxsignal.nxname] = self.nxsignal - other.nxsignal
if self.nxerrors:
if other.nxerrors:
result.errors = np.sqrt(self.errors.nxdata**2+other.errors.nxdata**2)
else:
result.errors = self.errors
return result
elif isinstance(other, NXgroup):
raise NeXusError("Cannot subtract two arbitrary groups")
else:
result.entries[self.nxsignal.nxname] = self.nxsignal - other
result.entries[self.nxsignal.nxname].nxname = self.nxsignal.nxname
return result
def __mul__(self, other):
"""
Define a method for multiplying the NXdata group with a NXdata group
or a number. Only the signal data is affected.
The result contains a copy of all the metadata contained in
the first NXdata group. The module checks that the dimensions are
compatible, but does not check that the NXfield names or values are
identical. This is so that spelling variations or rounding errors
do not make the operation fail. However, it is up to the user to
ensure that the results make sense.
"""
result = NXdata(entries=self.entries, attrs=self.attrs)
if isinstance(other, NXdata):
# error here signal not defined in this scope
#if self.nxsignal and signal.shape == other.nxsignal.shape:
if self.nxsignal and self.nxsignal.shape == other.nxsignal.shape:
result.entries[self.nxsignal.nxname] = self.nxsignal * other.nxsignal
if self.nxerrors:
if other.nxerrors:
result.errors = np.sqrt((self.errors.nxdata*other.nxsignal.nxdata)**2+
(other.errors.nxdata*self.nxsignal.nxdata)**2)
else:
result.errors = self.errors
return result
elif isinstance(other, NXgroup):
raise NeXusError("Cannot multiply two arbitrary groups")
else:
result.entries[self.nxsignal.nxname] = self.nxsignal * other
result.entries[self.nxsignal.nxname].nxname = self.nxsignal.nxname
if self.nxerrors:
result.errors = self.errors * other
return result
def __rmul__(self, other):
"""
Define a method for multiplying NXdata groups.
This variant makes __mul__ commutative.
"""
return self.__mul__(other)
def __div__(self, other):
"""
Define a method for dividing the NXdata group by a NXdata group
or a number. Only the signal data is affected.
The result contains a copy of all the metadata contained in
the first NXdata group. The module checks that the dimensions are
compatible, but does not check that the NXfield names or values are
identical. This is so that spelling variations or rounding errors
do not make the operation fail. However, it is up to the user to
ensure that the results make sense.
"""
result = NXdata(entries=self.entries, attrs=self.attrs)
if isinstance(other, NXdata):
if self.nxsignal and self.nxsignal.shape == other.nxsignal.shape:
# error here, signal and othersignal not defined here
#result.entries[self.nxsignal.nxname] = signal / othersignal
result.entries[self.nxsignal.nxname] = self.nxsignal / other.nxsignal
resultvalues = result.entries[self.nxsignal.nxname].nxdata
if self.nxerrors:
if other.nxerrors:
result.errors = (np.sqrt(self.errors.nxdata**2 +
(resultvalues*other.errors.nxdata)**2)
/ other.nxsignal)
else:
result.errors = self.errors
return result
elif isinstance(other, NXgroup):
raise NeXusError("Cannot divide two arbitrary groups")
else:
result.entries[self.nxsignal.nxname] = self.nxsignal / other
result.entries[self.nxsignal.nxname].nxname = self.nxsignal.nxname
if self.nxerrors: result.errors = self.errors / other
return result
class NXmonitor(NXdata):
"""
NXmonitor group. This is a subclass of the NXdata class.
See the NXdata and NXgroup documentation for more details.
"""
def __init__(self, signal=None, axes=(), *items, **opts):
NXdata.__init__(self, signal=signal, axes=axes, *items, **opts)
self._class = "NXmonitor"
if "name" not in opts.keys():
self._name = "monitor"
class NXlog(NXgroup):
"""
NXlog group. This is a subclass of the NXgroup class.
Methods
-------
plot(self, **opts)
Plot the logged values against the elapsed time. Valid
Matplotlib parameters, specifying markers, colors, etc, can be
specified using the 'opts' dictionary.
See the NXgroup documentation for more details.
"""
def __init__(self, *items, **opts):
self._class = "NXlog"
NXgroup.__init__(self, *items, **opts)
def plot(self, **opts):
axis = [self.time]
title = "%s Log" % self.value.nxname.upper()
self._plotter.plot(self.value, axis, title, **opts)
#-------------------------------------------------------------------------
#Add remaining base classes as subclasses of NXgroup and append to __all__
for _class in _nxclasses:
if _class not in globals():
docstring = """
%s group. This is a subclass of the NXgroup class.
See the NXgroup documentation for more details.
""" % _class
globals()[_class]=type(_class, (NXgroup,),
{'_class':_class,'__doc__':docstring})
__all__.append(_class)
#-------------------------------------------------------------------------
def centers(signal, axes):
"""
Return the centers of the axes.
This works regardless if the axes contain bin boundaries or centers.
"""
def findc(axis, dimlen):
if axis.shape[0] == dimlen+1:
return (axis.nxdata[:-1] + axis.nxdata[1:])/2
else:
assert axis.shape[0] == dimlen
return axis.nxdata
return [findc(a,signal.shape[i]) for i,a in enumerate(axes)]
def setmemory(value):
"""
Set the memory limit for data arrays (in MB).
"""
global NX_MEMORY
NX_MEMORY = value
def label(field):
"""
Return a label for a data field suitable for use on a graph axis.
"""
if hasattr(field,'long_name'):
return field.long_name
elif hasattr(field,'units'):
return "%s (%s)"%(field.nxname,field.units)
else:
return field.nxname
# File level operations
def load(filename, mode='r'):
"""
Read a NeXus file returning a tree of objects.
This is aliased to 'read' because of potential name clashes with Numpy
"""
file = NeXusTree(filename,mode)
tree = file.readfile()
file.close()
return tree
#Definition for when there are name clashes with Numpy
nxload = load
__all__.append('nxload')
def save(filename, group, format='w5'):
"""
Write a NeXus file from a tree of objects.
"""
if group.nxclass == "NXroot":
tree = group
elif group.nxclass == "NXentry":
tree = NXroot(group)
else:
tree = NXroot(NXentry(group))
file = NeXusTree(filename, format)
file.writefile(tree)
file.close()
def tree(file):
"""
Read and summarize the named NeXus file.
"""
nxfile = load(file)
nxfile.tree
def demo(argv):
"""
Process a list of command line commands.
'argv' should contain program name, command, arguments, where command is one
of the following:
copy fromfile.nxs tofile.nxs
ls f1.nxs f2.nxs ...
"""
if len(argv) > 1:
op = argv[1]
else:
op = 'help'
if op == 'ls':
for f in argv[2:]: dir(f)
elif op == 'copy' and len(argv)==4:
tree = load(argv[2])
save(argv[3], tree)
elif op == 'plot' and len(argv)==4:
tree = load(argv[2])
for entry in argv[3].split('.'):
tree = getattr(tree,entry)
tree.plot()
tree._plotter.show()
else:
usage = """
usage: %s cmd [args]
copy fromfile.nxs tofile.nxs
ls *.nxs
plot file.nxs entry.data
"""%(argv[0],)
print usage
if __name__ == "__main__":
import sys
demo(sys.argv)
|