/usr/share/pyshared/nibabel/quaternions.py is in python-nibabel 1.2.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 | # emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the NiBabel package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
'''
Functions to operate on, or return, quaternions.
The module also includes functions for the closely related angle, axis
pair as a specification for rotation.
Quaternions here consist of 4 values ``w, x, y, z``, where ``w`` is the
real (scalar) part, and ``x, y, z`` are the complex (vector) part.
Note - rotation matrices here apply to column vectors, that is,
they are applied on the left of the vector. For example:
>>> import numpy as np
>>> q = [0, 1, 0, 0] # 180 degree rotation around axis 0
>>> M = quat2mat(q) # from this module
>>> vec = np.array([1, 2, 3]).reshape((3,1)) # column vector
>>> tvec = np.dot(M, vec)
'''
import math
import numpy as np
MAX_FLOAT = np.maximum_sctype(np.float)
FLOAT_EPS = np.finfo(np.float).eps
def fillpositive(xyz, w2_thresh=None):
''' Compute unit quaternion from last 3 values
Parameters
----------
xyz : iterable
iterable containing 3 values, corresponding to quaternion x, y, z
w2_thresh : None or float, optional
threshold to determine if w squared is really negative.
If None (default) then w2_thresh set equal to
``-np.finfo(xyz.dtype).eps``, if possible, otherwise
``-np.finfo(np.float).eps``
Returns
-------
wxyz : array shape (4,)
Full 4 values of quaternion
Notes
-----
If w, x, y, z are the values in the full quaternion, assumes w is
positive.
Gives error if w*w is estimated to be negative
w = 0 corresponds to a 180 degree rotation
The unit quaternion specifies that np.dot(wxyz, wxyz) == 1.
If w is positive (assumed here), w is given by:
w = np.sqrt(1.0-(x*x+y*y+z*z))
w2 = 1.0-(x*x+y*y+z*z) can be near zero, which will lead to
numerical instability in sqrt. Here we use the system maximum
float type to reduce numerical instability
Examples
--------
>>> import numpy as np
>>> wxyz = fillpositive([0,0,0])
>>> np.all(wxyz == [1, 0, 0, 0])
True
>>> wxyz = fillpositive([1,0,0]) # Corner case; w is 0
>>> np.all(wxyz == [0, 1, 0, 0])
True
>>> np.dot(wxyz, wxyz)
1.0
'''
# Check inputs (force error if < 3 values)
if len(xyz) != 3:
raise ValueError('xyz should have length 3')
# If necessary, guess precision of input
if w2_thresh is None:
try: # trap errors for non-array, integer array
w2_thresh = -np.finfo(xyz.dtype).eps * 3
except (AttributeError, ValueError):
w2_thresh = -FLOAT_EPS * 3
# Use maximum precision
xyz = np.asarray(xyz, dtype=MAX_FLOAT)
# Calculate w
w2 = 1.0 - np.dot(xyz, xyz)
if w2 < 0:
if w2 < w2_thresh:
raise ValueError('w2 should be positive, but is %e' % w2)
w = 0
else:
w = np.sqrt(w2)
return np.r_[w, xyz]
def quat2mat(q):
''' Calculate rotation matrix corresponding to quaternion
Parameters
----------
q : 4 element array-like
Returns
-------
M : (3,3) array
Rotation matrix corresponding to input quaternion *q*
Notes
-----
Rotation matrix applies to column vectors, and is applied to the
left of coordinate vectors. The algorithm here allows non-unit
quaternions.
References
----------
Algorithm from
http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion
Examples
--------
>>> import numpy as np
>>> M = quat2mat([1, 0, 0, 0]) # Identity quaternion
>>> np.allclose(M, np.eye(3))
True
>>> M = quat2mat([0, 1, 0, 0]) # 180 degree rotn around axis 0
>>> np.allclose(M, np.diag([1, -1, -1]))
True
'''
w, x, y, z = q
Nq = w*w + x*x + y*y + z*z
if Nq < FLOAT_EPS:
return np.eye(3)
s = 2.0/Nq
X = x*s
Y = y*s
Z = z*s
wX = w*X; wY = w*Y; wZ = w*Z
xX = x*X; xY = x*Y; xZ = x*Z
yY = y*Y; yZ = y*Z; zZ = z*Z
return np.array(
[[ 1.0-(yY+zZ), xY-wZ, xZ+wY ],
[ xY+wZ, 1.0-(xX+zZ), yZ-wX ],
[ xZ-wY, yZ+wX, 1.0-(xX+yY) ]])
def mat2quat(M):
''' Calculate quaternion corresponding to given rotation matrix
Parameters
----------
M : array-like
3x3 rotation matrix
Returns
-------
q : (4,) array
closest quaternion to input matrix, having positive q[0]
Notes
-----
Method claimed to be robust to numerical errors in M
Constructs quaternion by calculating maximum eigenvector for matrix
K (constructed from input `M`). Although this is not tested, a
maximum eigenvalue of 1 corresponds to a valid rotation.
A quaternion q*-1 corresponds to the same rotation as q; thus the
sign of the reconstructed quaternion is arbitrary, and we return
quaternions with positive w (q[0]).
References
----------
* http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion
* Bar-Itzhack, Itzhack Y. (2000), "New method for extracting the
quaternion from a rotation matrix", AIAA Journal of Guidance,
Control and Dynamics 23(6):1085-1087 (Engineering Note), ISSN
0731-5090
Examples
--------
>>> import numpy as np
>>> q = mat2quat(np.eye(3)) # Identity rotation
>>> np.allclose(q, [1, 0, 0, 0])
True
>>> q = mat2quat(np.diag([1, -1, -1]))
>>> np.allclose(q, [0, 1, 0, 0]) # 180 degree rotn around axis 0
True
'''
# Qyx refers to the contribution of the y input vector component to
# the x output vector component. Qyx is therefore the same as
# M[0,1]. The notation is from the Wikipedia article.
Qxx, Qyx, Qzx, Qxy, Qyy, Qzy, Qxz, Qyz, Qzz = M.flat
# Fill only lower half of symmetric matrix
K = np.array([
[Qxx - Qyy - Qzz, 0, 0, 0 ],
[Qyx + Qxy, Qyy - Qxx - Qzz, 0, 0 ],
[Qzx + Qxz, Qzy + Qyz, Qzz - Qxx - Qyy, 0 ],
[Qyz - Qzy, Qzx - Qxz, Qxy - Qyx, Qxx + Qyy + Qzz]]
) / 3.0
# Use Hermitian eigenvectors, values for speed
vals, vecs = np.linalg.eigh(K)
# Select largest eigenvector, reorder to w,x,y,z quaternion
q = vecs[[3, 0, 1, 2], np.argmax(vals)]
# Prefer quaternion with positive w
# (q * -1 corresponds to same rotation as q)
if q[0] < 0:
q *= -1
return q
def mult(q1, q2):
''' Multiply two quaternions
Parameters
----------
q1 : 4 element sequence
q2 : 4 element sequence
Returns
-------
q12 : shape (4,) array
Notes
-----
See : http://en.wikipedia.org/wiki/Quaternions#Hamilton_product
'''
w1, x1, y1, z1 = q1
w2, x2, y2, z2 = q2
w = w1*w2 - x1*x2 - y1*y2 - z1*z2
x = w1*x2 + x1*w2 + y1*z2 - z1*y2
y = w1*y2 + y1*w2 + z1*x2 - x1*z2
z = w1*z2 + z1*w2 + x1*y2 - y1*x2
return np.array([w, x, y, z])
def conjugate(q):
''' Conjugate of quaternion
Parameters
----------
q : 4 element sequence
w, i, j, k of quaternion
Returns
-------
conjq : array shape (4,)
w, i, j, k of conjugate of `q`
'''
return np.array(q) * np.array([1.0, -1, -1, -1])
def norm(q):
''' Return norm of quaternion
Parameters
----------
q : 4 element sequence
w, i, j, k of quaternion
Returns
-------
n : scalar
quaternion norm
'''
return np.dot(q, q)
def isunit(q):
''' Return True is this is very nearly a unit quaternion '''
return np.allclose(norm(q), 1)
def inverse(q):
''' Return multiplicative inverse of quaternion `q`
Parameters
----------
q : 4 element sequence
w, i, j, k of quaternion
Returns
-------
invq : array shape (4,)
w, i, j, k of quaternion inverse
'''
return conjugate(q) / norm(q)
def eye():
''' Return identity quaternion '''
return np.array([1.0,0,0,0])
def rotate_vector(v, q):
''' Apply transformation in quaternion `q` to vector `v`
Parameters
----------
v : 3 element sequence
3 dimensional vector
q : 4 element sequence
w, i, j, k of quaternion
Returns
-------
vdash : array shape (3,)
`v` rotated by quaternion `q`
Notes
-----
See: http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Describing_rotations_with_quaternions
'''
varr = np.zeros((4,))
varr[1:] = v
return mult(q, mult(varr, conjugate(q)))[1:]
def nearly_equivalent(q1, q2, rtol=1e-5, atol=1e-8):
''' Returns True if `q1` and `q2` give near equivalent transforms
q1 may be nearly numerically equal to q2, or nearly equal to q2 * -1
(becuase a quaternion multiplied by -1 gives the same transform).
Parameters
----------
q1 : 4 element sequence
w, x, y, z of first quaternion
q2 : 4 element sequence
w, x, y, z of second quaternion
Returns
-------
equiv : bool
True if `q1` and `q2` are nearly equivalent, False otherwise
Examples
--------
>>> q1 = [1, 0, 0, 0]
>>> nearly_equivalent(q1, [0, 1, 0, 0])
False
>>> nearly_equivalent(q1, [1, 0, 0, 0])
True
>>> nearly_equivalent(q1, [-1, 0, 0, 0])
True
'''
q1 = np.array(q1)
q2 = np.array(q2)
if np.allclose(q1, q2, rtol, atol):
return True
return np.allclose(q1 * -1, q2, rtol, atol)
def angle_axis2quat(theta, vector, is_normalized=False):
''' Quaternion for rotation of angle `theta` around `vector`
Parameters
----------
theta : scalar
angle of rotation
vector : 3 element sequence
vector specifying axis for rotation.
is_normalized : bool, optional
True if vector is already normalized (has norm of 1). Default
False
Returns
-------
quat : 4 element sequence of symbols
quaternion giving specified rotation
Examples
--------
>>> q = angle_axis2quat(np.pi, [1, 0, 0])
>>> np.allclose(q, [0, 1, 0, 0])
True
Notes
-----
Formula from http://mathworld.wolfram.com/EulerParameters.html
'''
vector = np.array(vector)
if not is_normalized:
# Cannot divide in-place because input vector may be integer type,
# whereas output will be float type; this may raise an error in versions
# of numpy > 1.6.1
vector = vector / math.sqrt(np.dot(vector, vector))
t2 = theta / 2.0
st2 = math.sin(t2)
return np.concatenate(([math.cos(t2)],
vector * st2))
def angle_axis2mat(theta, vector, is_normalized=False):
''' Rotation matrix of angle `theta` around `vector`
Parameters
----------
theta : scalar
angle of rotation
vector : 3 element sequence
vector specifying axis for rotation.
is_normalized : bool, optional
True if vector is already normalized (has norm of 1). Default
False
Returns
-------
mat : array shape (3,3)
rotation matrix specified rotation
Notes
-----
From: http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle
'''
x, y, z = vector
if not is_normalized:
n = math.sqrt(x*x + y*y + z*z)
x = x/n
y = y/n
z = z/n
c = math.cos(theta); s = math.sin(theta); C = 1-c
xs = x*s; ys = y*s; zs = z*s
xC = x*C; yC = y*C; zC = z*C
xyC = x*yC; yzC = y*zC; zxC = z*xC
return np.array([
[ x*xC+c, xyC-zs, zxC+ys ],
[ xyC+zs, y*yC+c, yzC-xs ],
[ zxC-ys, yzC+xs, z*zC+c ]])
def quat2angle_axis(quat, identity_thresh=None):
''' Convert quaternion to rotation of angle around axis
Parameters
----------
quat : 4 element sequence
w, x, y, z forming quaternion
identity_thresh : None or scalar, optional
threshold below which the norm of the vector part of the
quaternion (x, y, z) is deemed to be 0, leading to the identity
rotation. None (the default) leads to a threshold estimated
based on the precision of the input.
Returns
-------
theta : scalar
angle of rotation
vector : array shape (3,)
axis around which rotation occurs
Examples
--------
>>> theta, vec = quat2angle_axis([0, 1, 0, 0])
>>> np.allclose(theta, np.pi)
True
>>> vec
array([ 1., 0., 0.])
If this is an identity rotation, we return a zero angle and an
arbitrary vector
>>> quat2angle_axis([1, 0, 0, 0])
(0.0, array([ 1., 0., 0.]))
Notes
-----
A quaternion for which x, y, z are all equal to 0, is an identity
rotation. In this case we return a 0 angle and an arbitrary
vector, here [1, 0, 0]
'''
w, x, y, z = quat
vec = np.asarray([x, y, z])
if identity_thresh is None:
try:
identity_thresh = np.finfo(vec.dtype).eps * 3
except ValueError: # integer type
identity_thresh = FLOAT_EPS * 3
n = math.sqrt(x*x + y*y + z*z)
if n < identity_thresh:
# if vec is nearly 0,0,0, this is an identity rotation
return 0.0, np.array([1.0, 0, 0])
return 2 * math.acos(w), vec / n
|