This file is indexed.

/usr/share/pyshared/nibabel/quaternions.py is in python-nibabel 1.2.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the NiBabel package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
'''
Functions to operate on, or return, quaternions.

The module also includes functions for the closely related angle, axis
pair as a specification for rotation.

Quaternions here consist of 4 values ``w, x, y, z``, where ``w`` is the
real (scalar) part, and ``x, y, z`` are the complex (vector) part.

Note - rotation matrices here apply to column vectors, that is,
they are applied on the left of the vector.  For example:

>>> import numpy as np
>>> q = [0, 1, 0, 0] # 180 degree rotation around axis 0
>>> M = quat2mat(q) # from this module
>>> vec = np.array([1, 2, 3]).reshape((3,1)) # column vector
>>> tvec = np.dot(M, vec)
'''

import math
import numpy as np

MAX_FLOAT = np.maximum_sctype(np.float)
FLOAT_EPS = np.finfo(np.float).eps


def fillpositive(xyz, w2_thresh=None):
    ''' Compute unit quaternion from last 3 values

    Parameters
    ----------
    xyz : iterable
       iterable containing 3 values, corresponding to quaternion x, y, z
    w2_thresh : None or float, optional
       threshold to determine if w squared is really negative.
       If None (default) then w2_thresh set equal to
       ``-np.finfo(xyz.dtype).eps``, if possible, otherwise
       ``-np.finfo(np.float).eps``

    Returns
    -------
    wxyz : array shape (4,)
         Full 4 values of quaternion

    Notes
    -----
    If w, x, y, z are the values in the full quaternion, assumes w is
    positive.

    Gives error if w*w is estimated to be negative

    w = 0 corresponds to a 180 degree rotation

    The unit quaternion specifies that np.dot(wxyz, wxyz) == 1.

    If w is positive (assumed here), w is given by:

    w = np.sqrt(1.0-(x*x+y*y+z*z))

    w2 = 1.0-(x*x+y*y+z*z) can be near zero, which will lead to
    numerical instability in sqrt.  Here we use the system maximum
    float type to reduce numerical instability

    Examples
    --------
    >>> import numpy as np
    >>> wxyz = fillpositive([0,0,0])
    >>> np.all(wxyz == [1, 0, 0, 0])
    True
    >>> wxyz = fillpositive([1,0,0]) # Corner case; w is 0
    >>> np.all(wxyz == [0, 1, 0, 0])
    True
    >>> np.dot(wxyz, wxyz)
    1.0
    '''
    # Check inputs (force error if < 3 values)
    if len(xyz) != 3:
        raise ValueError('xyz should have length 3')
    # If necessary, guess precision of input
    if w2_thresh is None:
        try: # trap errors for non-array, integer array
            w2_thresh = -np.finfo(xyz.dtype).eps * 3
        except (AttributeError, ValueError):
            w2_thresh = -FLOAT_EPS * 3
    # Use maximum precision
    xyz = np.asarray(xyz, dtype=MAX_FLOAT)
    # Calculate w
    w2 = 1.0 - np.dot(xyz, xyz)
    if w2 < 0:
        if w2 < w2_thresh:
            raise ValueError('w2 should be positive, but is %e' % w2)
        w = 0
    else:
        w = np.sqrt(w2)
    return np.r_[w, xyz]


def quat2mat(q):
    ''' Calculate rotation matrix corresponding to quaternion

    Parameters
    ----------
    q : 4 element array-like

    Returns
    -------
    M : (3,3) array
      Rotation matrix corresponding to input quaternion *q*

    Notes
    -----
    Rotation matrix applies to column vectors, and is applied to the
    left of coordinate vectors.  The algorithm here allows non-unit
    quaternions.

    References
    ----------
    Algorithm from
    http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion

    Examples
    --------
    >>> import numpy as np
    >>> M = quat2mat([1, 0, 0, 0]) # Identity quaternion
    >>> np.allclose(M, np.eye(3))
    True
    >>> M = quat2mat([0, 1, 0, 0]) # 180 degree rotn around axis 0
    >>> np.allclose(M, np.diag([1, -1, -1]))
    True
    '''
    w, x, y, z = q
    Nq = w*w + x*x + y*y + z*z
    if Nq < FLOAT_EPS:
        return np.eye(3)
    s = 2.0/Nq
    X = x*s
    Y = y*s
    Z = z*s
    wX = w*X; wY = w*Y; wZ = w*Z
    xX = x*X; xY = x*Y; xZ = x*Z
    yY = y*Y; yZ = y*Z; zZ = z*Z
    return np.array(
           [[ 1.0-(yY+zZ), xY-wZ, xZ+wY ],
            [ xY+wZ, 1.0-(xX+zZ), yZ-wX ],
            [ xZ-wY, yZ+wX, 1.0-(xX+yY) ]])


def mat2quat(M):
    ''' Calculate quaternion corresponding to given rotation matrix

    Parameters
    ----------
    M : array-like
      3x3 rotation matrix

    Returns
    -------
    q : (4,) array
      closest quaternion to input matrix, having positive q[0]

    Notes
    -----
    Method claimed to be robust to numerical errors in M

    Constructs quaternion by calculating maximum eigenvector for matrix
    K (constructed from input `M`).  Although this is not tested, a
    maximum eigenvalue of 1 corresponds to a valid rotation.

    A quaternion q*-1 corresponds to the same rotation as q; thus the
    sign of the reconstructed quaternion is arbitrary, and we return
    quaternions with positive w (q[0]).

    References
    ----------
    * http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion
    * Bar-Itzhack, Itzhack Y. (2000), "New method for extracting the
      quaternion from a rotation matrix", AIAA Journal of Guidance,
      Control and Dynamics 23(6):1085-1087 (Engineering Note), ISSN
      0731-5090

    Examples
    --------
    >>> import numpy as np
    >>> q = mat2quat(np.eye(3)) # Identity rotation
    >>> np.allclose(q, [1, 0, 0, 0])
    True
    >>> q = mat2quat(np.diag([1, -1, -1]))
    >>> np.allclose(q, [0, 1, 0, 0]) # 180 degree rotn around axis 0
    True

    '''
    # Qyx refers to the contribution of the y input vector component to
    # the x output vector component.  Qyx is therefore the same as
    # M[0,1].  The notation is from the Wikipedia article.
    Qxx, Qyx, Qzx, Qxy, Qyy, Qzy, Qxz, Qyz, Qzz = M.flat
    # Fill only lower half of symmetric matrix
    K = np.array([
        [Qxx - Qyy - Qzz, 0,               0,               0              ],
        [Qyx + Qxy,       Qyy - Qxx - Qzz, 0,               0              ],
        [Qzx + Qxz,       Qzy + Qyz,       Qzz - Qxx - Qyy, 0              ],
        [Qyz - Qzy,       Qzx - Qxz,       Qxy - Qyx,       Qxx + Qyy + Qzz]]
        ) / 3.0
    # Use Hermitian eigenvectors, values for speed
    vals, vecs = np.linalg.eigh(K)
    # Select largest eigenvector, reorder to w,x,y,z quaternion
    q = vecs[[3, 0, 1, 2], np.argmax(vals)]
    # Prefer quaternion with positive w
    # (q * -1 corresponds to same rotation as q)
    if q[0] < 0:
        q *= -1
    return q


def mult(q1, q2):
    ''' Multiply two quaternions

    Parameters
    ----------
    q1 : 4 element sequence
    q2 : 4 element sequence

    Returns
    -------
    q12 : shape (4,) array

    Notes
    -----
    See : http://en.wikipedia.org/wiki/Quaternions#Hamilton_product
    '''
    w1, x1, y1, z1 = q1
    w2, x2, y2, z2 = q2
    w = w1*w2 - x1*x2 - y1*y2 - z1*z2
    x = w1*x2 + x1*w2 + y1*z2 - z1*y2
    y = w1*y2 + y1*w2 + z1*x2 - x1*z2
    z = w1*z2 + z1*w2 + x1*y2 - y1*x2
    return np.array([w, x, y, z])


def conjugate(q):
    ''' Conjugate of quaternion

    Parameters
    ----------
    q : 4 element sequence
       w, i, j, k of quaternion

    Returns
    -------
    conjq : array shape (4,)
       w, i, j, k of conjugate of `q`
    '''
    return np.array(q) * np.array([1.0, -1, -1, -1])


def norm(q):
    ''' Return norm of quaternion

    Parameters
    ----------
    q : 4 element sequence
       w, i, j, k of quaternion

    Returns
    -------
    n : scalar
       quaternion norm
    '''
    return np.dot(q, q)


def isunit(q):
    ''' Return True is this is very nearly a unit quaternion '''
    return np.allclose(norm(q), 1)


def inverse(q):
    ''' Return multiplicative inverse of quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, i, j, k of quaternion

    Returns
    -------
    invq : array shape (4,)
       w, i, j, k of quaternion inverse
    '''
    return conjugate(q) / norm(q)


def eye():
    ''' Return identity quaternion '''
    return np.array([1.0,0,0,0])


def rotate_vector(v, q):
    ''' Apply transformation in quaternion `q` to vector `v`

    Parameters
    ----------
    v : 3 element sequence
       3 dimensional vector
    q : 4 element sequence
       w, i, j, k of quaternion

    Returns
    -------
    vdash : array shape (3,)
       `v` rotated by quaternion `q`

    Notes
    -----
    See: http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Describing_rotations_with_quaternions

    '''
    varr = np.zeros((4,))
    varr[1:] = v
    return mult(q, mult(varr, conjugate(q)))[1:]


def nearly_equivalent(q1, q2, rtol=1e-5, atol=1e-8):
    ''' Returns True if `q1` and `q2` give near equivalent transforms

    q1 may be nearly numerically equal to q2, or nearly equal to q2 * -1
    (becuase a quaternion multiplied by -1 gives the same transform).

    Parameters
    ----------
    q1 : 4 element sequence
       w, x, y, z of first quaternion
    q2 : 4 element sequence
       w, x, y, z of second quaternion

    Returns
    -------
    equiv : bool
       True if `q1` and `q2` are nearly equivalent, False otherwise

    Examples
    --------
    >>> q1 = [1, 0, 0, 0]
    >>> nearly_equivalent(q1, [0, 1, 0, 0])
    False
    >>> nearly_equivalent(q1, [1, 0, 0, 0])
    True
    >>> nearly_equivalent(q1, [-1, 0, 0, 0])
    True
    '''
    q1 = np.array(q1)
    q2 = np.array(q2)
    if np.allclose(q1, q2, rtol, atol):
        return True
    return np.allclose(q1 * -1, q2, rtol, atol)


def angle_axis2quat(theta, vector, is_normalized=False):
    ''' Quaternion for rotation of angle `theta` around `vector`

    Parameters
    ----------
    theta : scalar
       angle of rotation
    vector : 3 element sequence
       vector specifying axis for rotation.
    is_normalized : bool, optional
       True if vector is already normalized (has norm of 1).  Default
       False

    Returns
    -------
    quat : 4 element sequence of symbols
       quaternion giving specified rotation

    Examples
    --------
    >>> q = angle_axis2quat(np.pi, [1, 0, 0])
    >>> np.allclose(q, [0, 1, 0,  0])
    True

    Notes
    -----
    Formula from http://mathworld.wolfram.com/EulerParameters.html
    '''
    vector = np.array(vector)
    if not is_normalized:
        # Cannot divide in-place because input vector may be integer type,
        # whereas output will be float type; this may raise an error in versions
        # of numpy > 1.6.1
        vector = vector / math.sqrt(np.dot(vector, vector))
    t2 = theta / 2.0
    st2 = math.sin(t2)
    return np.concatenate(([math.cos(t2)],
                           vector * st2))


def angle_axis2mat(theta, vector, is_normalized=False):
    ''' Rotation matrix of angle `theta` around `vector`

    Parameters
    ----------
    theta : scalar
       angle of rotation
    vector : 3 element sequence
       vector specifying axis for rotation.
    is_normalized : bool, optional
       True if vector is already normalized (has norm of 1).  Default
       False

    Returns
    -------
    mat : array shape (3,3)
       rotation matrix specified rotation

    Notes
    -----
    From: http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle
    '''
    x, y, z = vector
    if not is_normalized:
        n = math.sqrt(x*x + y*y + z*z)
        x = x/n
        y = y/n
        z = z/n
    c = math.cos(theta); s = math.sin(theta); C = 1-c
    xs = x*s;   ys = y*s;   zs = z*s
    xC = x*C;   yC = y*C;   zC = z*C
    xyC = x*yC; yzC = y*zC; zxC = z*xC
    return np.array([
            [ x*xC+c,   xyC-zs,   zxC+ys ],
            [ xyC+zs,   y*yC+c,   yzC-xs ],
            [ zxC-ys,   yzC+xs,   z*zC+c ]])


def quat2angle_axis(quat, identity_thresh=None):
    ''' Convert quaternion to rotation of angle around axis

    Parameters
    ----------
    quat : 4 element sequence
       w, x, y, z forming quaternion
    identity_thresh : None or scalar, optional
       threshold below which the norm of the vector part of the
       quaternion (x, y, z) is deemed to be 0, leading to the identity
       rotation.  None (the default) leads to a threshold estimated
       based on the precision of the input.

    Returns
    -------
    theta : scalar
       angle of rotation
    vector : array shape (3,)
       axis around which rotation occurs

    Examples
    --------
    >>> theta, vec = quat2angle_axis([0, 1, 0, 0])
    >>> np.allclose(theta, np.pi)
    True
    >>> vec
    array([ 1.,  0.,  0.])

    If this is an identity rotation, we return a zero angle and an
    arbitrary vector

    >>> quat2angle_axis([1, 0, 0, 0])
    (0.0, array([ 1.,  0.,  0.]))

    Notes
    -----
    A quaternion for which x, y, z are all equal to 0, is an identity
    rotation.  In this case we return a 0 angle and an  arbitrary
    vector, here [1, 0, 0]
    '''
    w, x, y, z = quat
    vec = np.asarray([x, y, z])
    if identity_thresh is None:
        try:
            identity_thresh = np.finfo(vec.dtype).eps * 3
        except ValueError: # integer type
            identity_thresh = FLOAT_EPS * 3
    n = math.sqrt(x*x + y*y + z*z)
    if n < identity_thresh:
        # if vec is nearly 0,0,0, this is an identity rotation
        return 0.0, np.array([1.0, 0, 0])
    return  2 * math.acos(w), vec / n