This file is indexed.

/usr/share/pyshared/nibabel/nicom/dicomwrappers.py is in python-nibabel 1.2.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
''' Classes to wrap DICOM objects and files

The wrappers encapsulate the capabilities of the different DICOM
formats.

They also allow dictionary-like access to named fields.

For calculated attributes, we return None where needed data is missing.
It seemed strange to raise an error during attribute processing, other
than an AttributeError - breaking the 'properties manifesto'.   So, any
processing that needs to raise an error, should be in a method, rather
than in a property, or property-like thing.
'''

import operator

import numpy as np

from . import csareader as csar
from .dwiparams import B2q, nearest_pos_semi_def
from ..volumeutils import allopen
from ..onetime import setattr_on_read as one_time


class WrapperError(Exception):
    pass


def wrapper_from_file(file_like, *args, **kwargs):
    ''' Create DICOM wrapper from `file_like` object

    Parameters
    ----------
    file_like : object
       filename string or file-like object, pointing to a valid DICOM
       file readable by ``pydicom``
    *args : positional
    **kwargs : keyword
        args to ``dicom.read_file`` command.  ``force=True`` might be a
        likely keyword argument.

    Returns
    -------
    dcm_w : ``dicomwrappers.Wrapper`` or subclass
       DICOM wrapper corresponding to DICOM data type
    '''
    import dicom
    fobj = allopen(file_like)
    dcm_data = dicom.read_file(fobj, *args, **kwargs)
    return wrapper_from_data(dcm_data)


def wrapper_from_data(dcm_data):
    ''' Create DICOM wrapper from DICOM data object

    Parameters
    ----------
    dcm_data : ``dicom.dataset.Dataset`` instance or similar
       Object allowing attribute access, with DICOM attributes.
       Probably a dataset as read by ``pydicom``.

    Returns
    -------
    dcm_w : ``dicomwrappers.Wrapper`` or subclass
       DICOM wrapper corresponding to DICOM data type
    '''
    csa = csar.get_csa_header(dcm_data)
    if csa is None:
        return Wrapper(dcm_data)
    if not csar.is_mosaic(csa):
        return SiemensWrapper(dcm_data, csa)
    return MosaicWrapper(dcm_data, csa)


class Wrapper(object):
    ''' Class to wrap general DICOM files

    Methods:

    * get_affine()
    * get_data()
    * get_pixel_array()
    * is_same_series(other)
    * __getitem__ : return attributes from `dcm_data`
    * get(key[, default]) - as usual given __getitem__ above

    Attributes and things that look like attributes:

    * dcm_data : object
    * image_shape : tuple
    * image_orient_patient : (3,2) array
    * slice_normal : (3,) array
    * rotation_matrix : (3,3) array
    * voxel_sizes : tuple length 3
    * image_position : sequence length 3
    * slice_indicator : float
    * series_signature : tuple
    '''
    is_csa = False
    is_mosaic = False
    b_matrix = None
    q_vector = None

    def __init__(self, dcm_data=None):
        ''' Initialize wrapper

        Parameters
        ----------
        dcm_data : None or object, optional
           object should allow attribute access.  Usually this will be
           a ``dicom.dataset.Dataset`` object resulting from reading a
           DICOM file.   If None, just make an empty dict.
        '''
        if dcm_data is None:
            dcm_data = {}
        self.dcm_data = dcm_data

    @one_time
    def image_shape(self):
        ''' The array shape as it will be returned by ``get_data()``
        '''
        shape = (self.get('Rows'), self.get('Columns'))
        if None in shape:
            return None
        return shape

    @one_time
    def image_orient_patient(self):
        ''' Note that this is _not_ LR flipped '''
        iop = self.get('ImageOrientationPatient')
        if iop is None:
            return None
        # Values are python Decimals in pydicom 0.9.7
        iop = np.array((map(float, iop)))
        return np.array(iop).reshape(2,3).T

    @one_time
    def slice_normal(self):
        iop = self.image_orient_patient
        if iop is None:
            return None
        return np.cross(*iop.T[:])

    @one_time
    def rotation_matrix(self):
        ''' Return rotation matrix between array indices and mm

        Note that we swap the two columns of the 'ImageOrientPatient'
        when we create the rotation matrix.  This is takes into account
        the slightly odd ij transpose construction of the DICOM
        orientation fields - see doc/theory/dicom_orientaiton.rst.
        '''
        iop = self.image_orient_patient
        s_norm = self.slice_normal
        if None in (iop, s_norm):
            return None
        R = np.eye(3)
        # np.fliplr(iop) gives matrix F in
        # doc/theory/dicom_orientation.rst The fliplr accounts for the
        # fact that the first column in ``iop`` refers to changes in
        # column index, and the second to changes in row index.
        R[:,:2] = np.fliplr(iop)
        R[:,2] = s_norm
        # check this is in fact a rotation matrix
        assert np.allclose(np.eye(3),
                           np.dot(R, R.T),
                           atol=1e-6)
        return R

    @one_time
    def voxel_sizes(self):
        ''' voxel sizes for array as returned by ``get_data()``
        '''
        # pix space gives (row_spacing, column_spacing).  That is, the
        # mm you move when moving from one row to the next, and the mm
        # you move when moving from one column to the next
        pix_space = self.get('PixelSpacing')
        if pix_space is None:
            return None
        zs = self.get('SpacingBetweenSlices')
        if zs is None:
            zs = self.get('SliceThickness')
            if zs is None:
                zs = 1
        # Protect from python decimals in pydicom 0.9.7
        zs = float(zs)
        pix_space = map(float, pix_space)
        return tuple(pix_space + [zs])

    @one_time
    def image_position(self):
        ''' Return position of first voxel in data block

        Parameters
        ----------
        None

        Returns
        -------
        img_pos : (3,) array
           position in mm of voxel (0,0) in image array
        '''
        ipp = self.get('ImagePositionPatient')
        if ipp is None:
            return None
        # Values are python Decimals in pydicom 0.9.7
        return np.array(map(float, ipp))

    @one_time
    def slice_indicator(self):
        ''' A number that is higher for higher slices in Z

        Comparing this number between two adjacent slices should give a
        difference equal to the voxel size in Z.

        See doc/theory/dicom_orientation for description
        '''
        ipp = self.image_position
        s_norm = self.slice_normal
        if None in (ipp, s_norm):
            return None
        return np.inner(ipp, s_norm)

    @one_time
    def instance_number(self):
        ''' Just because we use this a lot for sorting '''
        return self.get('InstanceNumber')

    @one_time
    def series_signature(self):
        ''' Signature for matching slices into series

        We use `signature` in ``self.is_same_series(other)``.

        Returns
        -------
        signature : dict
           with values of 2-element sequences, where first element is
           value, and second element is function to compare this value
           with another.  This allows us to pass things like arrays,
           that might need to be ``allclose`` instead of equal
        '''
        # dictionary with value, comparison func tuple
        signature = {}
        eq = operator.eq
        for key in ('SeriesInstanceUID',
                    'SeriesNumber',
                    'ImageType',
                    'SequenceName',
                    'EchoNumbers'):
            signature[key] = (self.get(key), eq)
        signature['image_shape'] = (self.image_shape, eq)
        signature['iop'] = (self.image_orient_patient, none_or_close)
        signature['vox'] = (self.voxel_sizes, none_or_close)
        return signature

    def __getitem__(self, key):
        ''' Return values from DICOM object'''
        try:
            return getattr(self.dcm_data, key)
        except AttributeError:
            raise KeyError('%s not defined in dcm_data' % key)

    def get(self, key, default=None):
        return getattr(self.dcm_data, key, default)

    def get_affine(self):
        ''' Return mapping between voxel and DICOM coordinate system

        Parameters
        ----------
        None

        Returns
        -------
        aff : (4,4) affine
           Affine giving transformation between voxels in data array and
           mm in the DICOM patient coordinate system.
        '''
        # rotation matrix already accounts for the ij transpose in the
        # DICOM image orientation patient transform.  So. column 0 is
        # direction cosine for changes in row index, column 1 is
        # direction cosine for changes in column index
        orient = self.rotation_matrix
        # therefore, these voxel sizes are in the right order (row,
        # column, slice)
        vox = self.voxel_sizes
        ipp = self.image_position
        if None in (orient, vox, ipp):
            raise WrapperError('Not enough information for affine')
        aff = np.eye(4)
        aff[:3,:3] = orient * np.array(vox)
        aff[:3,3] = ipp
        return aff

    def get_pixel_array(self):
        ''' Return unscaled pixel array from DICOM '''
        try:
            return self['pixel_array']
        except KeyError:
            raise WrapperError('Cannot find data in DICOM')

    def get_data(self):
        ''' Get scaled image data from DICOMs

        We return the data as DICOM understands it, first dimension is
        rows, second dimension is columns

        Returns
        -------
        data : array
           array with data as scaled from any scaling in the DICOM
           fields.
        '''
        return self._scale_data(self.get_pixel_array())

    def is_same_series(self, other):
        ''' Return True if `other` appears to be in same series

        Parameters
        ----------
        other : object
           object with ``series_signature`` attribute that is a
           mapping.  Usually it's a ``Wrapper`` or sub-class instance.

        Returns
        -------
        tf : bool
           True if `other` might be in the same series as `self`, False
           otherwise.
        '''
        # compare signature dictionaries.  The dictionaries each contain
        # comparison rules, we prefer our own when we have them.  If a
        # key is not present in either dictionary, assume the value is
        # None.
        my_sig = self.series_signature
        your_sig = other.series_signature
        my_keys = set(my_sig)
        your_keys = set(your_sig)
        # we have values in both signatures
        for key in my_keys.intersection(your_keys):
            v1, func = my_sig[key]
            v2, _ = your_sig[key]
            if not func(v1, v2):
                return False
        # values present in one or the other but not both
        for keys, sig in ((my_keys - your_keys, my_sig),
                          (your_keys - my_keys, your_sig)):
            for key in keys:
                v1, func = sig[key]
                if not func(v1, None):
                    return False
        return True

    def _scale_data(self, data):
        scale = self.get('RescaleSlope', 1)
        offset = self.get('RescaleIntercept', 0)
        # a little optimization.  If we are applying either the scale or
        # the offset, we need to allow upcasting to float.
        if scale != 1:
            if offset == 0:
                return data * scale
            return data * scale + offset
        if offset != 0:
            return data + offset
        return data


class SiemensWrapper(Wrapper):
    ''' Wrapper for Siemens format DICOMs

    Adds attributes:

    * csa_header : mapping
    * b_matrix : (3,3) array
    * q_vector : (3,) array
    '''
    is_csa = True

    def __init__(self, dcm_data=None, csa_header=None):
        ''' Initialize Siemens wrapper

        The Siemens-specific information is in the `csa_header`, either
        passed in here, or read from the input `dcm_data`.

        Parameters
        ----------
        dcm_data : None or object, optional
           object should allow attribute access.  If `csa_header` is
           None, it should also be possible to extract a CSA header from
           `dcm_data`. Usually this will be a ``dicom.dataset.Dataset``
           object resulting from reading a DICOM file.  If None, we just
           make an empty dict.
        csa_header : None or mapping, optional
           mapping giving values for Siemens CSA image sub-header.  If
           None, we try and read the CSA information from `dcm_data`.
           If this fails, we fall back to an empty dict.
        '''
        if dcm_data is None:
            dcm_data = {}
        self.dcm_data = dcm_data
        if csa_header is None:
            csa_header = csar.get_csa_header(dcm_data)
            if csa_header is None:
                csa_header = {}
        self.csa_header = csa_header

    @one_time
    def slice_normal(self):
        slice_normal = csar.get_slice_normal(self.csa_header)
        if not slice_normal is None:
            return np.array(slice_normal)
        iop = self.image_orient_patient
        if iop is None:
            return None
        return np.cross(*iop.T[:])

    @one_time
    def series_signature(self):
        ''' Add ICE dims from CSA header to signature '''
        signature = super(SiemensWrapper, self).series_signature
        ice = csar.get_ice_dims(self.csa_header)
        if not ice is None:
            ice = ice[:6] + ice[8:9]
        signature['ICE_Dims'] = (ice, lambda x, y: x == y)
        return signature

    @one_time
    def b_matrix(self):
        ''' Get DWI B matrix referring to voxel space

        Parameters
        ----------
        None

        Returns
        -------
        B : (3,3) array or None
           B matrix in *voxel* orientation space.  Returns None if this is
           not a Siemens header with the required information.  We return
           None if this is a b0 acquisition
        '''
        hdr = self.csa_header
        # read B matrix as recorded in CSA header.  This matrix refers to
        # the space of the DICOM patient coordinate space.
        B = csar.get_b_matrix(hdr)
        if B is None: # may be not diffusion or B0 image
            bval_requested = csar.get_b_value(hdr)
            if bval_requested is None:
                return None
            if bval_requested != 0:
                raise csar.CSAError('No B matrix and b value != 0')
            return np.zeros((3,3))
        # rotation from voxels to DICOM PCS, inverted to give the rotation
        # from DPCS to voxels.  Because this is an orthonormal matrix, its
        # transpose is its inverse
        R = self.rotation_matrix.T
        # because B results from V dot V.T, the rotation B is given by R dot
        # V dot V.T dot R.T == R dot B dot R.T
        B_vox = np.dot(R, np.dot(B, R.T))
        # fix presumed rounding errors in the B matrix by making it positive
        # semi-definite.
        return nearest_pos_semi_def(B_vox)

    @one_time
    def q_vector(self):
        ''' Get DWI q vector referring to voxel space

        Parameters
        ----------
        None

        Returns
        -------
        q: (3,) array
           Estimated DWI q vector in *voxel* orientation space.  Returns
           None if this is not (detectably) a DWI
        '''
        B = self.b_matrix
        if B is None:
            return None
        # We've enforced more or less positive semi definite with the
        # b_matrix routine
        return B2q(B, tol=1e-8)


class MosaicWrapper(SiemensWrapper):
    ''' Class for Siemens mosaic format data

    Mosaic format is a way of storing a 3D image in a 2D slice - and
    it's as simple as you'd imagine it would be - just storing the slices
    in a mosaic similar to a light-box print.

    We need to allow for this when getting the data and (because of an
    idiosyncrasy in the way Siemens stores the images) calculating the
    position of the first voxel.

    Adds attributes:

    * n_mosaic : int
    * mosaic_size : float
    '''
    is_mosaic = True

    def __init__(self, dcm_data=None, csa_header=None, n_mosaic=None):
        ''' Initialize Siemens Mosaic wrapper

        The Siemens-specific information is in the `csa_header`, either
        passed in here, or read from the input `dcm_data`.

        Parameters
        ----------
        dcm_data : None or object, optional
           object should allow attribute access.  If `csa_header` is
           None, it should also be possible for to extract a CSA header
           from `dcm_data`. Usually this will be a
           ``dicom.dataset.Dataset`` object resulting from reading a
           DICOM file.  If None, just make an empty dict.
        csa_header : None or mapping, optional
           mapping giving values for Siemens CSA image sub-header.
        n_mosaic : None or int, optional
           number of images in mosaic.  If None, try to get this number
           from `csa_header`.  If this fails, raise an error
        '''
        SiemensWrapper.__init__(self, dcm_data, csa_header)
        if n_mosaic is None:
            try:
                n_mosaic = csar.get_n_mosaic(self.csa_header)
            except KeyError:
                pass
            if n_mosaic is None or n_mosaic == 0:
                raise WrapperError('No valid mosaic number in CSA '
                                   'header; is this really '
                                   'Siemens mosiac data?')
        self.n_mosaic = n_mosaic
        self.mosaic_size = np.ceil(np.sqrt(n_mosaic))

    @one_time
    def image_shape(self):
        ''' Return image shape as returned by ``get_data()`` '''
        # reshape pixel slice array back from mosaic
        rows = self.get('Rows')
        cols = self.get('Columns')
        if None in (rows, cols):
            return None
        mosaic_size = self.mosaic_size
        return (int(rows / mosaic_size),
                int(cols / mosaic_size),
                self.n_mosaic)

    @one_time
    def image_position(self):
        ''' Return position of first voxel in data block

        Adjusts Siemens mosaic position vector for bug in mosaic format
        position.  See ``dicom_mosaic`` in doc/theory for details.

        Parameters
        ----------
        None

        Returns
        -------
        img_pos : (3,) array
           position in mm of voxel (0,0,0) in Mosaic array
        '''
        ipp = super(MosaicWrapper, self).image_position
        # mosaic image size
        md_rows, md_cols = (self.get('Rows'), self.get('Columns'))
        iop = self.image_orient_patient
        pix_spacing = self.get('PixelSpacing')
        if None in (ipp, md_rows, md_cols, iop, pix_spacing):
            return None
        # PixelSpacing values are python Decimal in pydicom 0.9.7
        pix_spacing = np.array(map(float, pix_spacing))
        # size of mosaic array before rearranging to 3D.
        md_rc = np.array([md_rows, md_cols])
        # size of slice array after reshaping to 3D
        rd_rc = md_rc / self.mosaic_size
        # apply algorithm for undoing mosaic translation error - see
        # ``dicom_mosaic`` doc
        vox_trans_fixes = (md_rc - rd_rc) / 2
        # flip IOP field to refer to rows then columns index change -
        # see dicom_orientation doc
        Q = np.fliplr(iop) * pix_spacing
        return ipp + np.dot(Q, vox_trans_fixes[:,None]).ravel()

    def get_data(self):
        ''' Get scaled image data from DICOMs

        Resorts data block from mosaic to 3D

        Returns
        -------
        data : array
           array with data as scaled from any scaling in the DICOM
           fields.

        Notes
        -----
        The apparent image in the DICOM file is a 2D array that consists of
        blocks, that are the output 2D slices.  Let's call the original array
        the *slab*, and the contained slices *slices*.   The slices are of pixel
        dimension ``n_slice_rows`` x ``n_slice_cols``.  The slab is of pixel
        dimension ``n_slab_rows`` x ``n_slab_cols``.  Because the arrangement of
        blocks in the slab is defined as being square, the number of blocks per
        slab row and slab column is the same.  Let ``n_blocks`` be the number of
        blocks contained in the slab.  There is also ``n_slices`` - the number
        of slices actually collected, some number <= ``n_blocks``.  We have the
        value ``n_slices`` from the 'NumberOfImagesInMosaic' field of the
        Siemens private (CSA) header.  ``n_row_blocks`` and ``n_col_blocks`` are
        therefore given by ``ceil(sqrt(n_slices))``, and ``n_blocks`` is
        ``n_row_blocks ** 2``.  Also ``n_slice_rows == n_slab_rows /
        n_row_blocks``, etc.  Using these numbers we can therefore reconstruct
        the slices from the 2D DICOM pixel array.
        '''
        shape = self.image_shape
        if shape is None:
            raise WrapperError('No valid information for image shape')
        n_slice_rows, n_slice_cols, n_mosaic = shape
        n_slab_rows = self.mosaic_size
        n_blocks = n_slab_rows ** 2
        data = self.get_pixel_array()
        v4=data.reshape(n_slab_rows, n_slice_rows,
                        n_slab_rows, n_slice_cols)
        # move the mosaic dims to the end
        v4=v4.transpose((1,3,0,2))
        # pool mosaic-generated dims
        v3=v4.reshape((n_slice_rows, n_slice_cols, n_blocks))
        # delete any padding slices
        v3 = v3[...,:n_mosaic]
        return self._scale_data(v3)


def none_or_close(val1, val2, rtol=1e-5, atol=1e-6):
    ''' Match if `val1` and `val2` are both None, or are close

    Parameters
    ----------
    val1 : None or array-like
    val2 : None or array-like
    rtol : float, optional
       Relative tolerance; see ``np.allclose``
    atol : float, optional
       Absolute tolerance; see ``np.allclose``

    Returns
    -------
    tf : bool
       True iff (both `val1` and `val2` are None) or (`val1` and `val2`
       are close arrays, as detected by ``np.allclose`` with parameters
       `rtol` and `atal`).

    Examples
    --------
    >>> none_or_close(None, None)
    True
    >>> none_or_close(1, None)
    False
    >>> none_or_close(None, 1)
    False
    >>> none_or_close([1,2], [1,2])
    True
    >>> none_or_close([0,1], [0,2])
    False
    '''
    if (val1, val2) == (None, None):
        return True
    if None in (val1, val2):
        return False
    return np.allclose(val1, val2, rtol, atol)