This file is indexed.

/usr/share/pyshared/nibabel/nicom/csareader.py is in python-nibabel 1.2.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
''' CSA header reader from SPM spec

'''
import numpy as np

from ..py3k import ZEROB, asbytes, asstr
from .structreader import Unpacker

# DICOM VR code to Python type
_CONVERTERS = {
    'FL': float, # float
    'FD': float, # double
    'DS': float, # decimal string
    'SS': int, # signed short
    'US': int, # unsigned short
    'SL': int, # signed long
    'UL': int, # unsigned long
    'IS': int, # integer string
    }


class CSAError(Exception):
    pass


class CSAReadError(CSAError):
    pass


def get_csa_header(dcm_data, csa_type='image'):
    ''' Get CSA header information from DICOM header

    Return None if the header does not contain CSA information of the
    specified `csa_type`

    Parameters
    ----------
    dcm_data : dicom.Dataset
       DICOM dataset.  Needs only implement the tag fetch with
       ``dcm_data[group, element]`` syntax
    csa_type : {'image', 'series'}, optional
       Type of CSA field to read; default is 'image'

    Returns
    -------
    csa_info : None or dict
       Parsed CSA field of `csa_type` or None, if we cannot find the CSA
       information.
    '''
    csa_type = csa_type.lower()
    if csa_type == 'image':
        element_no = 0x1010
        label = 'Image'
    elif csa_type == 'series':
        element_no = 0x1020
        label = 'Series'
    else:
        raise ValueError('Invalid CSA header type "%s"'
                         % csa_type)
    try:
        tag = dcm_data[0x29, element_no]
    except KeyError:
        return None
    if tag.name != '[CSA %s Header Info]' % label:
        return None
    return read(tag.value)


def read(csa_str):
    ''' Read CSA header from string `csa_str`

    Parameters
    ----------
    csa_str : str
       byte string containing CSA header information

    Returns
    -------
    header : dict
       header information as dict, where `header` has fields (at least)
       ``type, n_tags, tags``.  ``header['tags']`` is also a dictionary
       with one key, value pair for each tag in the header.
    '''
    csa_len = len(csa_str)
    csa_dict = {'tags': {}}
    hdr_id = csa_str[:4]
    up_str = Unpacker(csa_str, endian='<')
    if hdr_id == asbytes('SV10'): # CSA2
        hdr_type = 2
        up_str.ptr = 4 # omit the SV10
        csa_dict['unused0'] = up_str.read(4)
    else: # CSA1
        hdr_type = 1
    csa_dict['type'] = hdr_type
    csa_dict['n_tags'], csa_dict['check'] = up_str.unpack('2I')
    if not 0 < csa_dict['n_tags'] <= 128:
        raise CSAReadError('Number of tags `t` should be '
                           '0 < t <= 128')
    for tag_no in range(csa_dict['n_tags']):
        name, vm, vr, syngodt, n_items, last3 = \
            up_str.unpack('64si4s3i')
        vr = nt_str(vr)
        name = nt_str(name)
        tag = {'n_items': n_items,
               'vm': vm, # value multiplicity
               'vr': vr, # value representation
               'syngodt': syngodt,
               'last3': last3,
               'tag_no': tag_no}
        if vm == 0:
            n_values = n_items
        else:
            n_values = vm
        # data converter
        converter = _CONVERTERS.get(vr)
        # CSA1 specific length modifier
        if tag_no == 1:
            tag0_n_items = n_items
        assert n_items < 100
        items = []
        for item_no in range(n_items):
            x0,x1,x2,x3 = up_str.unpack('4i')
            ptr = up_str.ptr
            if hdr_type == 1:  # CSA1 - odd length calculation
                item_len = x0 - tag0_n_items
                if item_len < 0 or (ptr + item_len) > csa_len:
                    if item_no < vm:
                        items.append('')
                    break
            else: # CSA2
                item_len = x1
                if (ptr + item_len) > csa_len:
                    raise CSAReadError('Item is too long, '
                                       'aborting read')
            if item_no >= n_values:
                assert item_len == 0
                continue
            item = nt_str(up_str.read(item_len))
            if converter:
                # we may have fewer real items than are given in
                # n_items, but we don't know how many - assume that
                # we've reached the end when we hit an empty item
                if item_len == 0:
                    n_values = item_no
                    continue
                item = converter(item)
            items.append(item)
            # go to 4 byte boundary
            plus4 = item_len % 4
            if plus4 != 0:
                up_str.ptr += (4-plus4)
        tag['items'] = items
        csa_dict['tags'][name] = tag
    return csa_dict


def get_scalar(csa_dict, tag_name):
    try:
        items = csa_dict['tags'][tag_name]['items']
    except KeyError:
        return None
    if len(items) == 0:
        return None
    return items[0]


def get_vector(csa_dict, tag_name, n):
    try:
        items = csa_dict['tags'][tag_name]['items']
    except KeyError:
        return None
    if len(items) == 0:
        return None
    if len(items) != n:
        raise ValueError('Expecting %d vector' % n)
    return np.array(items)


def is_mosaic(csa_dict):
    ''' Return True if the data is of Mosaic type

    Parameters
    ----------
    csa_dict : dict
       dict containing read CSA data

    Returns
    -------
    tf : bool
       True if the `dcm_data` appears to be of Siemens mosaic type,
       False otherwise
    '''
    if csa_dict is None:
        return False
    if get_acq_mat_txt(csa_dict) is None:
        return False
    n_o_m = get_n_mosaic(csa_dict)
    return not (n_o_m is None) and n_o_m != 0


def get_n_mosaic(csa_dict):
    return get_scalar(csa_dict, 'NumberOfImagesInMosaic')


def get_acq_mat_txt(csa_dict):
    return get_scalar(csa_dict, 'AcquisitionMatrixText')


def get_slice_normal(csa_dict):
    return get_vector(csa_dict, 'SliceNormalVector', 3)


def get_b_matrix(csa_dict):
    vals =  get_vector(csa_dict, 'B_matrix', 6)
    if vals is None:
        return
    # the 6 vector is the upper triangle of the symmetric B matrix
    inds = np.array([0, 1, 2, 1, 3, 4, 2, 4, 5])
    B = np.array(vals)[inds]
    return B.reshape(3,3)


def get_b_value(csa_dict):
    return get_scalar(csa_dict, 'B_value')


def get_g_vector(csa_dict):
    return get_vector(csa_dict, 'DiffusionGradientDirection', 3)


def get_ice_dims(csa_dict):
    dims = get_scalar(csa_dict, 'ICE_Dims')
    if dims is None:
        return None
    return dims.split('_')


def nt_str(s):
    ''' Strip string to first null

    Parameters
    ----------
    s : str

    Returns
    -------
    sdash : str
       s stripped to first occurence of null (0)
    '''
    zero_pos = s.find(ZEROB)
    if zero_pos == -1:
        return s
    return asstr(s[:zero_pos])