/usr/share/pyshared/nibabel/externals/netcdf.py is in python-nibabel 1.2.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 | # emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the NiBabel package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""
NetCDF reader/writer module.
This module is used to read and create NetCDF files. NetCDF files are
accessed through the `netcdf_file` object. Data written to and from NetCDF
files are contained in `netcdf_variable` objects. Attributes are given
as member variables of the `netcdf_file` and `netcdf_variable` objects.
Notes
-----
NetCDF files are a self-describing binary data format. The file contains
metadata that describes the dimensions and variables in the file. More
details about NetCDF files can be found `here
<http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html>`_. There
are three main sections to a NetCDF data structure:
1. Dimensions
2. Variables
3. Attributes
The dimensions section records the name and length of each dimension used
by the variables. The variables would then indicate which dimensions it
uses and any attributes such as data units, along with containing the data
values for the variable. It is good practice to include a
variable that is the same name as a dimension to provide the values for
that axes. Lastly, the attributes section would contain additional
information such as the name of the file creator or the instrument used to
collect the data.
When writing data to a NetCDF file, there is often the need to indicate the
'record dimension'. A record dimension is the unbounded dimension for a
variable. For example, a temperature variable may have dimensions of
latitude, longitude and time. If one wants to add more temperature data to
the NetCDF file as time progresses, then the temperature variable should
have the time dimension flagged as the record dimension.
This module implements the Scientific.IO.NetCDF API to read and create
NetCDF files. The same API is also used in the PyNIO and pynetcdf
modules, allowing these modules to be used interchangeably when working
with NetCDF files. The major advantage of this module over other
modules is that it doesn't require the code to be linked to the NetCDF
C libraries.
The code is based on the `NetCDF file format specification
<http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html>`_. A
NetCDF file is a self-describing binary format, with a header followed
by data. The header contains metadata describing dimensions, variables
and the position of the data in the file, so access can be done in an
efficient manner without loading unnecessary data into memory. We use
the ``mmap`` module to create Numpy arrays mapped to the data on disk,
for the same purpose.
The structure of a NetCDF file is as follows:
C D F <VERSION BYTE> <NUMBER OF RECORDS>
<DIMENSIONS> <GLOBAL ATTRIBUTES> <VARIABLES METADATA>
<NON-RECORD DATA> <RECORD DATA>
Record data refers to data where the first axis can be expanded at
will. All record variables share a same dimension at the first axis,
and they are stored at the end of the file per record, ie
A[0], B[0], ..., A[1], B[1], ..., etc,
so that new data can be appended to the file without changing its original
structure. Non-record data are padded to a 4n bytes boundary. Record data
are also padded, unless there is exactly one record variable in the file,
in which case the padding is dropped. All data is stored in big endian
byte order.
The Scientific.IO.NetCDF API allows attributes to be added directly to
instances of ``netcdf_file`` and ``netcdf_variable``. To differentiate
between user-set attributes and instance attributes, user-set attributes
are automatically stored in the ``_attributes`` attribute by overloading
``__setattr__``. This is the reason why the code sometimes uses
``obj.__dict__['key'] = value``, instead of simply ``obj.key = value``;
otherwise the key would be inserted into userspace attributes.
In addition, the NetCDF file header contains the position of the data in
the file, so access can be done in an efficient manner without loading
unnecessary data into memory. It uses the ``mmap`` module to create
Numpy arrays mapped to the data on disk, for the same purpose.
Examples
--------
To create a NetCDF file:
Make a temporary file for testing:
>>> import os
>>> from tempfile import mkdtemp
>>> tmp_pth = mkdtemp()
>>> fname = os.path.join(tmp_pth, 'test.nc')
Then:
>>> f = netcdf_file(fname, 'w')
>>> f.history = 'Created for a test'
>>> f.createDimension('time', 10)
>>> time = f.createVariable('time', 'i', ('time',))
>>> time[:] = range(10)
>>> time.units = 'days since 2008-01-01'
>>> f.close()
Note the assignment of ``range(10)`` to ``time[:]``. Exposing the slice
of the time variable allows for the data to be set in the object, rather
than letting ``range(10)`` overwrite the ``time`` variable.
To read the NetCDF file we just created:
>>> f = netcdf_file(fname, 'r')
>>> f.history #23dt next : bytes
'Created for a test'
>>> time = f.variables['time']
>>> time.units #23dt next : bytes
'days since 2008-01-01'
>>> print time.shape
(10,)
>>> print time[-1]
9
>>> f.close()
Delete our temporary directory and file:
>>> del f, time # needed for windows unlink
>>> os.unlink(fname)
>>> os.rmdir(tmp_pth)
"""
#TODO:
# * properly implement ``_FillValue``.
# * implement Jeff Whitaker's patch for masked variables.
# * fix character variables.
# * implement PAGESIZE for Python 2.6?
#The Scientific.IO.NetCDF API allows attributes to be added directly to
#instances of ``netcdf_file`` and ``netcdf_variable``. To differentiate
#between user-set attributes and instance attributes, user-set attributes
#are automatically stored in the ``_attributes`` attribute by overloading
#``__setattr__``. This is the reason why the code sometimes uses
#``obj.__dict__['key'] = value``, instead of simply ``obj.key = value``;
#otherwise the key would be inserted into userspace attributes.
__all__ = ['netcdf_file']
from operator import mul
from mmap import mmap, ACCESS_READ
import numpy as np
from ..py3k import asbytes, asstr
from numpy import fromstring, ndarray, dtype, empty, array, asarray
from numpy import little_endian as LITTLE_ENDIAN
ABSENT = asbytes('\x00\x00\x00\x00\x00\x00\x00\x00')
ZERO = asbytes('\x00\x00\x00\x00')
NC_BYTE = asbytes('\x00\x00\x00\x01')
NC_CHAR = asbytes('\x00\x00\x00\x02')
NC_SHORT = asbytes('\x00\x00\x00\x03')
NC_INT = asbytes('\x00\x00\x00\x04')
NC_FLOAT = asbytes('\x00\x00\x00\x05')
NC_DOUBLE = asbytes('\x00\x00\x00\x06')
NC_DIMENSION = asbytes('\x00\x00\x00\n')
NC_VARIABLE = asbytes('\x00\x00\x00\x0b')
NC_ATTRIBUTE = asbytes('\x00\x00\x00\x0c')
TYPEMAP = { NC_BYTE: ('b', 1),
NC_CHAR: ('c', 1),
NC_SHORT: ('h', 2),
NC_INT: ('i', 4),
NC_FLOAT: ('f', 4),
NC_DOUBLE: ('d', 8) }
REVERSE = { ('b', 1): NC_BYTE,
('B', 1): NC_CHAR,
('c', 1): NC_CHAR,
('h', 2): NC_SHORT,
('i', 4): NC_INT,
('f', 4): NC_FLOAT,
('d', 8): NC_DOUBLE,
# these come from asarray(1).dtype.char and asarray('foo').dtype.char,
# used when getting the types from generic attributes.
('l', 4): NC_INT,
('S', 1): NC_CHAR }
class netcdf_file(object):
"""
A file object for NetCDF data.
A `netcdf_file` object has two standard attributes: `dimensions` and
`variables`. The values of both are dictionaries, mapping dimension
names to their associated lengths and variable names to variables,
respectively. Application programs should never modify these
dictionaries.
All other attributes correspond to global attributes defined in the
NetCDF file. Global file attributes are created by assigning to an
attribute of the `netcdf_file` object.
Parameters
----------
filename : string or file-like
string -> filename
mode : {'r', 'w'}, optional
read-write mode, default is 'r'
mmap : None or bool, optional
Whether to mmap `filename` when reading. Default is True
when `filename` is a file name, False when `filename` is a
file-like object
version : {1, 2}, optional
version of netcdf to read / write, where 1 means *Classic
format* and 2 means *64-bit offset format*. Default is 1. See
`here <http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Which-Format.html>`_
for more info.
"""
def __init__(self, filename, mode='r', mmap=None, version=1):
"""Initialize netcdf_file from fileobj (str or file-like).
Parameters
----------
filename : string or file-like
string -> filename
mode : {'r', 'w'}, optional
read-write mode, default is 'r'
mmap : None or bool, optional
Whether to mmap `filename` when reading. Default is True
when `filename` is a file name, False when `filename` is a
file-like object
version : {1, 2}, optional
version of netcdf to read / write, where 1 means *Classic
format* and 2 means *64-bit offset format*. Default is 1. See
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Which-Format.html#Which-Format
"""
if hasattr(filename, 'seek'): # file-like
self.fp = filename
self.filename = 'None'
if mmap is None:
mmap = False
elif mmap and not hasattr(filename, 'fileno'):
raise ValueError('Cannot use file object for mmap')
else: # maybe it's a string
self.filename = filename
self.fp = open(self.filename, '%sb' % mode)
if mmap is None:
mmap = True
self.use_mmap = mmap
self.version_byte = version
if not mode in 'rw':
raise ValueError("Mode must be either 'r' or 'w'.")
self.mode = mode
self.dimensions = {}
self.variables = {}
self._dims = []
self._recs = 0
self._recsize = 0
self._attributes = {}
if mode == 'r':
self._read()
def __setattr__(self, attr, value):
# Store user defined attributes in a separate dict,
# so we can save them to file later.
try:
self._attributes[attr] = value
except AttributeError:
pass
self.__dict__[attr] = value
def close(self):
"""Closes the NetCDF file."""
try:
if self.fp.closed:
return
except AttributeError: # gzip files don't have closed attr
pass
try:
self.flush()
finally:
self.fp.close()
__del__ = close
def createDimension(self, name, length):
"""
Adds a dimension to the Dimension section of the NetCDF data structure.
Note that this function merely adds a new dimension that the variables can
reference. The values for the dimension, if desired, should be added as
a variable using `createVariable`, referring to this dimension.
Parameters
----------
name : str
Name of the dimension (Eg, 'lat' or 'time').
length : int
Length of the dimension.
See Also
--------
createVariable
"""
self.dimensions[name] = length
self._dims.append(name)
def createVariable(self, name, type, dimensions):
"""
Create an empty variable for the `netcdf_file` object, specifying its data
type and the dimensions it uses.
Parameters
----------
name : str
Name of the new variable.
type : dtype or str
Data type of the variable.
dimensions : sequence of str
List of the dimension names used by the variable, in the desired order.
Returns
-------
variable : netcdf_variable
The newly created ``netcdf_variable`` object.
This object has also been added to the `netcdf_file` object as well.
See Also
--------
createDimension
Notes
-----
Any dimensions to be used by the variable should already exist in the
NetCDF data structure or should be created by `createDimension` prior to
creating the NetCDF variable.
"""
shape = tuple([self.dimensions[dim] for dim in dimensions])
shape_ = tuple([dim or 0 for dim in shape]) # replace None with 0 for numpy
if isinstance(type, basestring): type = dtype(type)
typecode, size = type.char, type.itemsize
if (typecode, size) not in REVERSE:
raise ValueError("NetCDF 3 does not support type %s" % type)
dtype_ = '>%s' % typecode
if size > 1: dtype_ += str(size)
data = empty(shape_, dtype=dtype_)
self.variables[name] = netcdf_variable(data, typecode, size, shape, dimensions)
return self.variables[name]
def flush(self):
"""
Perform a sync-to-disk flush if the `netcdf_file` object is in write mode.
See Also
--------
sync : Identical function
"""
if hasattr(self, 'mode') and self.mode is 'w':
self._write()
sync = flush
def _write(self):
self.fp.write(asbytes('CDF'))
self.fp.write(array(self.version_byte, '>b').tostring())
# Write headers and data.
self._write_numrecs()
self._write_dim_array()
self._write_gatt_array()
self._write_var_array()
def _write_numrecs(self):
# Get highest record count from all record variables.
for var in self.variables.values():
if var.isrec and len(var.data) > self._recs:
self.__dict__['_recs'] = len(var.data)
self._pack_int(self._recs)
def _write_dim_array(self):
if self.dimensions:
self.fp.write(NC_DIMENSION)
self._pack_int(len(self.dimensions))
for name in self._dims:
self._pack_string(name)
length = self.dimensions[name]
self._pack_int(length or 0) # replace None with 0 for record dimension
else:
self.fp.write(ABSENT)
def _write_gatt_array(self):
self._write_att_array(self._attributes)
def _write_att_array(self, attributes):
if attributes:
self.fp.write(NC_ATTRIBUTE)
self._pack_int(len(attributes))
for name, values in attributes.items():
self._pack_string(name)
self._write_values(values)
else:
self.fp.write(ABSENT)
def _write_var_array(self):
if self.variables:
self.fp.write(NC_VARIABLE)
self._pack_int(len(self.variables))
# Sort variables non-recs first, then recs. We use a DSU
# since some people use pupynere with Python 2.3.x.
deco = [ (v._shape and not v.isrec, k) for (k, v) in self.variables.items() ]
deco.sort()
variables = [ k for (unused, k) in deco ][::-1]
# Set the metadata for all variables.
for name in variables:
self._write_var_metadata(name)
# Now that we have the metadata, we know the vsize of
# each record variable, so we can calculate recsize.
self.__dict__['_recsize'] = sum([
var._vsize for var in self.variables.values()
if var.isrec])
# Set the data for all variables.
for name in variables:
self._write_var_data(name)
else:
self.fp.write(ABSENT)
def _write_var_metadata(self, name):
var = self.variables[name]
self._pack_string(name)
self._pack_int(len(var.dimensions))
for dimname in var.dimensions:
dimid = self._dims.index(dimname)
self._pack_int(dimid)
self._write_att_array(var._attributes)
nc_type = REVERSE[var.typecode(), var.itemsize()]
self.fp.write(asbytes(nc_type))
if not var.isrec:
vsize = var.data.size * var.data.itemsize
vsize += -vsize % 4
else: # record variable
try:
vsize = var.data[0].size * var.data.itemsize
except IndexError:
vsize = 0
rec_vars = len([var for var in self.variables.values()
if var.isrec])
if rec_vars > 1:
vsize += -vsize % 4
self.variables[name].__dict__['_vsize'] = vsize
self._pack_int(vsize)
# Pack a bogus begin, and set the real value later.
self.variables[name].__dict__['_begin'] = self.fp.tell()
self._pack_begin(0)
def _write_var_data(self, name):
var = self.variables[name]
# Set begin in file header.
the_beguine = self.fp.tell()
self.fp.seek(var._begin)
self._pack_begin(the_beguine)
self.fp.seek(the_beguine)
# Write data.
if not var.isrec:
self.fp.write(var.data.tostring())
count = var.data.size * var.data.itemsize
self.fp.write(asbytes('0') * (var._vsize - count))
else: # record variable
# Handle rec vars with shape[0] < nrecs.
if self._recs > len(var.data):
shape = (self._recs,) + var.data.shape[1:]
var.data.resize(shape)
pos0 = pos = self.fp.tell()
for rec in var.data:
# Apparently scalars cannot be converted to big endian. If we
# try to convert a ``=i4`` scalar to, say, '>i4' the dtype
# will remain as ``=i4``.
if not rec.shape and (rec.dtype.byteorder == '<' or
(rec.dtype.byteorder == '=' and LITTLE_ENDIAN)):
rec = rec.byteswap()
self.fp.write(rec.tostring())
# Padding
count = rec.size * rec.itemsize
self.fp.write(asbytes('0') * (var._vsize - count))
pos += self._recsize
self.fp.seek(pos)
self.fp.seek(pos0 + var._vsize)
def _write_values(self, values):
if hasattr(values, 'dtype'):
nc_type = REVERSE[values.dtype.char, values.dtype.itemsize]
else:
types = [
(int, NC_INT),
(long, NC_INT),
(float, NC_FLOAT),
(basestring, NC_CHAR),
]
try:
sample = values[0]
except TypeError:
sample = values
for class_, nc_type in types:
if isinstance(sample, class_): break
typecode, size = TYPEMAP[nc_type]
dtype_ = '>%s' % typecode
values = asarray(values, dtype=dtype_)
self.fp.write(asbytes(nc_type))
if values.dtype.char == 'S':
nelems = values.itemsize
else:
nelems = values.size
self._pack_int(nelems)
if not values.shape and (values.dtype.byteorder == '<' or
(values.dtype.byteorder == '=' and LITTLE_ENDIAN)):
values = values.byteswap()
self.fp.write(values.tostring())
count = values.size * values.itemsize
self.fp.write(asbytes('0') * (-count % 4)) # pad
def _read(self):
# Check magic bytes and version
magic = self.fp.read(3)
if not magic == asbytes('CDF'):
raise TypeError("Error: %s is not a valid NetCDF 3 file" %
self.filename)
self.__dict__['version_byte'] = fromstring(self.fp.read(1), '>b')[0]
# Read file headers and set data.
self._read_numrecs()
self._read_dim_array()
self._read_gatt_array()
self._read_var_array()
def _read_numrecs(self):
self.__dict__['_recs'] = self._unpack_int()
def _read_dim_array(self):
header = self.fp.read(4)
if not header in [ZERO, NC_DIMENSION]:
raise ValueError("Unexpected header.")
count = self._unpack_int()
for dim in range(count):
name = asstr(self._unpack_string())
length = self._unpack_int() or None # None for record dimension
self.dimensions[name] = length
self._dims.append(name) # preserve order
def _read_gatt_array(self):
for k, v in self._read_att_array().items():
self.__setattr__(k, v)
def _read_att_array(self):
header = self.fp.read(4)
if not header in [ZERO, NC_ATTRIBUTE]:
raise ValueError("Unexpected header.")
count = self._unpack_int()
attributes = {}
for attr in range(count):
name = asstr(self._unpack_string())
attributes[name] = self._read_values()
return attributes
def _read_var_array(self):
header = self.fp.read(4)
if not header in [ZERO, NC_VARIABLE]:
raise ValueError("Unexpected header.")
begin = 0
dtypes = {'names': [], 'formats': []}
rec_vars = []
count = self._unpack_int()
for var in range(count):
(name, dimensions, shape, attributes,
typecode, size, dtype_, begin_, vsize) = self._read_var()
# http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html
# Note that vsize is the product of the dimension lengths
# (omitting the record dimension) and the number of bytes
# per value (determined from the type), increased to the
# next multiple of 4, for each variable. If a record
# variable, this is the amount of space per record. The
# netCDF "record size" is calculated as the sum of the
# vsize's of all the record variables.
#
# The vsize field is actually redundant, because its value
# may be computed from other information in the header. The
# 32-bit vsize field is not large enough to contain the size
# of variables that require more than 2^32 - 4 bytes, so
# 2^32 - 1 is used in the vsize field for such variables.
if shape and shape[0] is None: # record variable
rec_vars.append(name)
# The netCDF "record size" is calculated as the sum of
# the vsize's of all the record variables.
self.__dict__['_recsize'] += vsize
if begin == 0: begin = begin_
dtypes['names'].append(name)
dtypes['formats'].append(str(shape[1:]) + dtype_)
# Handle padding with a virtual variable.
if typecode in 'bch':
actual_size = reduce(mul, (1,) + shape[1:]) * size
padding = -actual_size % 4
if padding:
dtypes['names'].append('_padding_%d' % var)
dtypes['formats'].append('(%d,)>b' % padding)
# Data will be set later.
data = None
else: # not a record variable
# Calculate size to avoid problems with vsize (above)
a_size = reduce(mul, shape, 1) * size
if self.use_mmap:
mm = mmap(self.fp.fileno(), begin_+a_size, access=ACCESS_READ)
data = ndarray.__new__(ndarray, shape, dtype=dtype_,
buffer=mm, offset=begin_, order=0)
else:
pos = self.fp.tell()
self.fp.seek(begin_)
data = fromstring(self.fp.read(a_size), dtype=dtype_)
data.shape = shape
self.fp.seek(pos)
# Add variable.
self.variables[name] = netcdf_variable(
data, typecode, size, shape, dimensions, attributes)
if rec_vars:
# Remove padding when only one record variable.
if len(rec_vars) == 1:
dtypes['names'] = dtypes['names'][:1]
dtypes['formats'] = dtypes['formats'][:1]
# Build rec array.
if self.use_mmap:
mm = mmap(self.fp.fileno(), begin+self._recs*self._recsize, access=ACCESS_READ)
rec_array = ndarray.__new__(ndarray, (self._recs,), dtype=dtypes,
buffer=mm, offset=begin, order=0)
else:
pos = self.fp.tell()
self.fp.seek(begin)
rec_array = fromstring(self.fp.read(self._recs*self._recsize), dtype=dtypes)
rec_array.shape = (self._recs,)
self.fp.seek(pos)
for var in rec_vars:
self.variables[var].__dict__['data'] = rec_array[var]
def _read_var(self):
name = asstr(self._unpack_string())
dimensions = []
shape = []
dims = self._unpack_int()
for i in range(dims):
dimid = self._unpack_int()
dimname = self._dims[dimid]
dimensions.append(dimname)
dim = self.dimensions[dimname]
shape.append(dim)
dimensions = tuple(dimensions)
shape = tuple(shape)
attributes = self._read_att_array()
nc_type = self.fp.read(4)
vsize = self._unpack_int()
begin = [self._unpack_int, self._unpack_int64][self.version_byte-1]()
typecode, size = TYPEMAP[nc_type]
dtype_ = '>%s' % typecode
return name, dimensions, shape, attributes, typecode, size, dtype_, begin, vsize
def _read_values(self):
nc_type = self.fp.read(4)
n = self._unpack_int()
typecode, size = TYPEMAP[nc_type]
count = n*size
values = self.fp.read(int(count))
self.fp.read(-count % 4) # read padding
if typecode is not 'c':
values = fromstring(values, dtype='>%s' % typecode)
if values.shape == (1,): values = values[0]
else:
values = values.rstrip(asbytes('\x00'))
return values
def _pack_begin(self, begin):
if self.version_byte == 1:
self._pack_int(begin)
elif self.version_byte == 2:
self._pack_int64(begin)
def _pack_int(self, value):
self.fp.write(array(value, '>i').tostring())
_pack_int32 = _pack_int
def _unpack_int(self):
return int(fromstring(self.fp.read(4), '>i')[0])
_unpack_int32 = _unpack_int
def _pack_int64(self, value):
self.fp.write(array(value, '>q').tostring())
def _unpack_int64(self):
return fromstring(self.fp.read(8), '>q')[0]
def _pack_string(self, s):
count = len(s)
self._pack_int(count)
self.fp.write(asbytes(s))
self.fp.write(asbytes('0') * (-count % 4)) # pad
def _unpack_string(self):
count = self._unpack_int()
s = self.fp.read(count).rstrip(asbytes('\x00'))
self.fp.read(-count % 4) # read padding
return s
class netcdf_variable(object):
"""
A data object for the `netcdf` module.
`netcdf_variable` objects are constructed by calling the method
`netcdf_file.createVariable` on the `netcdf_file` object. `netcdf_variable`
objects behave much like array objects defined in numpy, except that their
data resides in a file. Data is read by indexing and written by assigning
to an indexed subset; the entire array can be accessed by the index ``[:]``
or (for scalars) by using the methods `getValue` and `assignValue`.
`netcdf_variable` objects also have attribute `shape` with the same meaning
as for arrays, but the shape cannot be modified. There is another read-only
attribute `dimensions`, whose value is the tuple of dimension names.
All other attributes correspond to variable attributes defined in
the NetCDF file. Variable attributes are created by assigning to an
attribute of the `netcdf_variable` object.
Parameters
----------
data : array_like
The data array that holds the values for the variable.
Typically, this is initialized as empty, but with the proper shape.
typecode : dtype character code
Desired data-type for the data array.
size : int
Desired element size for the data array.
shape : sequence of ints
The shape of the array. This should match the lengths of the
variable's dimensions.
dimensions : sequence of strings
The names of the dimensions used by the variable. Must be in the
same order of the dimension lengths given by `shape`.
attributes : dict, optional
Attribute values (any type) keyed by string names. These attributes
become attributes for the netcdf_variable object.
Attributes
----------
dimensions : list of str
List of names of dimensions used by the variable object.
isrec, shape
Properties
See also
--------
isrec, shape
"""
def __init__(self, data, typecode, size, shape, dimensions, attributes=None):
self.data = data
self._typecode = typecode
self._size = size
self._shape = shape
self.dimensions = dimensions
self._attributes = attributes or {}
for k, v in self._attributes.items():
self.__dict__[k] = v
def __setattr__(self, attr, value):
# Store user defined attributes in a separate dict,
# so we can save them to file later.
try:
self._attributes[attr] = value
except AttributeError:
pass
self.__dict__[attr] = value
def isrec(self):
"""Returns whether the variable has a record dimension or not.
A record dimension is a dimension along which additional data could be
easily appended in the netcdf data structure without much rewriting of
the data file. This attribute is a read-only property of the
`netcdf_variable`.
"""
return self.data.shape and not self._shape[0]
isrec = property(isrec)
def shape(self):
"""Returns the shape tuple of the data variable.
This is a read-only attribute and can not be modified in the
same manner of other numpy arrays.
"""
return self.data.shape
shape = property(shape)
def getValue(self):
"""
Retrieve a scalar value from a `netcdf_variable` of length one.
Raises
------
ValueError
If the netcdf variable is an array of length greater than one,
this exception will be raised.
"""
return self.data.item()
def assignValue(self, value):
"""
Assign a scalar value to a `netcdf_variable` of length one.
Parameters
----------
value : scalar
Scalar value (of compatible type) to assign to a length-one netcdf
variable. This value will be written to file.
Raises
------
ValueError
If the input is not a scalar, or if the destination is not a length-one
netcdf variable.
"""
self.data.itemset(value)
def typecode(self):
"""
Return the typecode of the variable.
Returns
-------
typecode : char
The character typecode of the variable (eg, 'i' for int).
"""
return self._typecode
def itemsize(self):
"""
Return the itemsize of the variable.
Returns
-------
itemsize : int
The element size of the variable (eg, 8 for float64).
"""
return self._size
def __getitem__(self, index):
return self.data[index]
def __setitem__(self, index, data):
# Expand data for record vars?
if self.isrec:
if isinstance(index, tuple):
rec_index = index[0]
else:
rec_index = index
if isinstance(rec_index, slice):
recs = (rec_index.start or 0) + len(data)
else:
recs = rec_index + 1
if recs > len(self.data):
shape = (recs,) + self._shape[1:]
self.data.resize(shape)
self.data[index] = data
NetCDFFile = netcdf_file
NetCDFVariable = netcdf_variable
|