/usr/share/pyshared/mvpa2/testing/clfs.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Provides `clfs` dictionary with instances of all available classifiers."""
__docformat__ = 'restructuredtext'
# Global modules
import numpy as np
# Some global imports useful through out unittests
from mvpa2.base import cfg
# Base classes
from mvpa2.clfs.base import Classifier
from mvpa2.datasets.base import Dataset
from mvpa2.measures.base import FeaturewiseMeasure
#
# first deal with classifiers which do not have external deps
#
from mvpa2.clfs.base import Classifier
from mvpa2.clfs.smlr import SMLR
from mvpa2.clfs.knn import *
from mvpa2.clfs.warehouse import clfswh, regrswh
from mvpa2.base import externals
from mvpa2.base.types import accepts_dataset_as_samples
__all__ = ['clfswh', 'regrswh', 'Classifier', 'SameSignClassifier',
'Less1Classifier', 'sample_clf_nl', 'sample_clf_lin',
'sample_clf_reg', 'cfg', 'SillySensitivityAnalyzer']
# if have ANY svm implementation
if externals.exists('libsvm') or externals.exists('shogun'):
from mvpa2.clfs.svm import *
__all__ += ['LinearCSVMC']
if externals.exists('libsvm'):
__all__ += ['libsvm', 'LinearNuSVMC']
if externals.exists('shogun'):
__all__ += ['sg']
#
# Few silly classifiers
#
class SameSignClassifier(Classifier):
"""Dummy classifier which reports +1 class if both features have
the same sign, -1 otherwise"""
__tags__ = ['notrain2predict']
def __init__(self, **kwargs):
Classifier.__init__(self, **kwargs)
def _train(self, data):
# we don't need that ;-)
pass
@accepts_dataset_as_samples
def _predict(self, data):
data = np.asanyarray(data)
datalen = len(data)
estimates = []
for d in data:
estimates.append(2*int( (d[0]>=0) == (d[1]>=0) )-1)
self.ca.predictions = estimates
self.ca.estimates = estimates # just for the sake of having estimates
return estimates
class Less1Classifier(SameSignClassifier):
"""Dummy classifier which reports +1 class if abs value of max less than 1"""
def _predict(self, data):
datalen = len(data)
estimates = []
for d in data:
estimates.append(2*int(max(d)<=1)-1)
self.predictions = estimates
return estimates
class SillySensitivityAnalyzer(FeaturewiseMeasure):
"""Simple one which just returns xrange[-N/2, N/2], where N is the
number of features
"""
is_trained = True
def __init__(self, mult=1, **kwargs):
FeaturewiseMeasure.__init__(self, **kwargs)
self.__mult = mult
def _call(self, dataset):
"""Train linear SVM on `dataset` and extract weights from classifier.
"""
sens = self.__mult *( np.arange(dataset.nfeatures) - int(dataset.nfeatures/2) )
return Dataset(sens[np.newaxis])
# Sample universal classifiers (linear and non-linear) which should be
# used whenever it doesn't matter what classifier it is for testing
# some higher level creations -- chosen so it is the fastest universal
# one. Also it should not punch state.py in the face how it is
# happening with kNN...
sample_clf_lin = SMLR(lm=0.1)#sg.svm.LinearCSVMC(svm_impl='libsvm')
#if externals.exists('shogun'):
# sample_clf_nl = sg.SVM(kernel_type='RBF', svm_impl='libsvm')
#else:
#classical one which was used for a while
#and surprisingly it is not bad at all for the unittests
sample_clf_nl = kNN(k=5)
# and also a regression-based classifier
r = clfswh['linear', 'regression_based', 'has_sensitivity']
if len(r) > 0: sample_clf_reg = r[0]
else: sample_clf_reg = None
|