/usr/share/pyshared/mvpa2/misc/fx.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Misc. functions (in the mathematical sense)"""
__docformat__ = 'restructuredtext'
import numpy as np
##REF: Name was automagically refactored
def single_gamma_hrf(t, A=5.4, W=5.2, K=1.0):
"""Hemodynamic response function model.
The version consists of a single gamma function (also see
double_gamma_hrf()).
Parameters
----------
t : float
Time.
A : float
Time to peak.
W : float
Full-width at half-maximum.
K : float
Scaling factor.
"""
A = float(A)
W = float(W)
K = float(K)
return K * (t / A) ** ((A ** 2) / (W ** 2) * 8.0 * np.log(2.0)) \
* np.e ** ((t - A) / -((W ** 2) / A / 8.0 / np.log(2.0)))
##REF: Name was automagically refactored
def double_gamma_hrf(t, A1=5.4, W1=5.2, K1=1.0, A2=10.8, W2=7.35, K2=0.35):
"""Hemodynamic response function model.
The version is using two gamma functions (also see single_gamma_hrf()).
Parameters
----------
t : float
Time.
A : float
Time to peak.
W : float
Full-width at half-maximum.
K : float
Scaling factor.
Parameters A, W and K exists individually for each of both gamma
functions.
"""
A1 = float(A1)
W1 = float(W1)
K1 = float(K1)
A2 = float(A2)
W2 = float(W2)
K2 = float(K2)
return single_gamma_hrf(t, A1, W1, K1) - single_gamma_hrf(t, A2, W2, K2)
def dual_gaussian(x, amp1=1.0, mean1=0.0, std1=1.0,
amp2=1.0, mean2=0.0, std2=1.0):
"""Sum of two Gaussians.
Parameters
----------
x : array
Function argument
amp1: float
Amplitude parameter of the first Gaussian
mean1: float
Mean parameter of the first Gaussian
std1: float
Standard deviation parameter of the first Gaussian
amp2: float
Amplitude parameter of the second Gaussian
mean2: float
Mean parameter of the second Gaussian
std2: float
Standard deviation parameter of the second Gaussian
"""
from scipy.stats import norm
if std1 <= 0 or std2 <= 0:
return np.nan
return (amp1 * norm.pdf(x, mean1, std1)) + (amp2 * norm.pdf(x, mean2, std2))
def dual_positive_gaussian(x, amp1=1.0, mean1=0.0, std1=1.0,
amp2=1.0, mean2=0.0, std2=1.0):
"""Sum of two non-negative Gaussians
Parameters
----------
x : array
Function argument
amp1: float
Amplitude parameter of the first Gaussian
mean1: float
Mean parameter of the first Gaussian
std1: float
Standard deviation parameter of the first Gaussian
amp2: float
Amplitude parameter of the second Gaussian
mean2: float
Mean parameter of the second Gaussian
std2: float
Standard deviation parameter of the second Gaussian
"""
if amp1 < 0 or amp2 < 0:
return np.nan
return dual_gaussian(x, amp1, mean1, std1, amp2, mean2, std2)
##REF: Name was automagically refactored
def least_sq_fit(fx, params, y, x=None, **kwargs):
"""Simple convenience wrapper around SciPy's optimize.leastsq.
The advantage of using this wrapper instead of optimize.leastsq directly
is, that it automatically constructs an appropriate error function and
easily deals with 2d data arrays, i.e. each column with multiple values for
the same function argument (`x`-value).
Parameters
----------
fx : functor
Function to be fitted to the data. It has to take a vector with
function arguments (`x`-values) as the first argument, followed by
an arbitrary number of (to be fitted) parameters.
params : sequence
Sequence of start values for all to be fitted parameters. During
fitting all parameters in this sequences are passed to the function
in the order in which they appear in this sequence.
y : 1d or 2d array
The data the function is fitted to. In the case of a 2d array, each
column in the array is considered to be multiple observations or
measurements of function values for the same `x`-value.
x : Corresponding function arguments (`x`-values) for each datapoint, i.e.
element in `y` or columns in `y', in the case of `y` being a 2d array.
If `x` is not provided it will be generated by `np.arange(m)`, where
`m` is either the length of `y` or the number of columns in `y`, if
`y` is a 2d array.
**kwargs
All additonal keyword arguments are passed to `fx`.
Returns
-------
tuple : as returned by scipy.optimize.leastsq
i.e. 2-tuple with list of final (fitted) parameters of `fx` and an
integer value indicating success or failure of the fitting procedure
(see leastsq docs for more information).
"""
# import here to not let the whole module depend on SciPy
from scipy.optimize import leastsq
y = np.asanyarray(y)
if len(y.shape) > 1:
nsamp, ylen = y.shape
else:
nsamp, ylen = (1, len(y))
# contruct matching x-values if necessary
if x is None:
x = np.arange(ylen)
# transform x and y into 1d arrays
if nsamp > 1:
x = np.array([x] * nsamp).ravel()
y = y.ravel()
# define error function
def efx(p):
err = y - fx(x, *p, **kwargs)
return err
# do fit
return leastsq(efx, params)
def fit2histogram(X, fx, params, nbins=20, x_range=None):
"""Fit a function to multiple histograms.
First histogram is computed for each data row vector individually.
Afterwards a custom function is fitted to the binned data.
TODO
----
- ATM requires multiple "samples" although it would be as useful with 1, and it pukes if we add that
single rudimentary dimension
Parameters
----------
X : array-like
Data (nsamples x nfeatures)
fx : functor
Function to be fitted. Its interface has to comply to the requirements
as for `least_sq_fit`.
params : tuple
Initial parameter values.
nbins : int
Number of histogram bins.
x_range : None or tuple
Range spanned by the histogram bins. By default the actual mininum and
maximum values of the data are used.
Returns
-------
tuple
(histograms (nsampels x nbins),
bin locations (left border),
bin width,
output of `least_sq_fit`)
"""
if x_range is None:
# use global min max to ensure consistent bins across observations
xrange = (X.min(), X.max())
nobsrv = len(X)
# histograms per observation
H = []
bin_centers = None
bin_left = None
for obsrv in X:
hi = np.histogram(obsrv, bins=nbins, range=x_range)
if bin_centers is None:
bin_left = hi[1][:-1]
# round to take care of numerical instabilities
bin_width = np.abs(
np.asscalar(
np.unique(
np.round(bin_left - hi[1][1:],
decimals=6))))
bin_centers = bin_left + bin_width / 2
H.append(hi[0])
H = np.asarray(H)
return (H,
bin_left,
bin_width,
least_sq_fit(fx, params, H, bin_centers))
def get_random_rotation(ns, nt=None, data=None):
"""Return some random rotation (or rotation + dim reduction) matrix
Parameters
----------
ns : int
Dimensionality of source space
nt : int, optional
Dimensionality of target space
data : array, optional
Some data (should have rank high enough) to derive
rotation
"""
if nt is None:
nt = ns
# figure out some "random" rotation
d = max(ns, nt)
if data is None:
data = np.random.normal(size=(d*10, d))
_u, _s, _vh = np.linalg.svd(data[:, :d])
R = _vh[:ns, :nt]
if ns == nt:
# Test if it is indeed a rotation matrix ;)
# Lets flip first axis if necessary
if np.linalg.det(R) < 0:
R[:, 0] *= -1.0
return R
|