/usr/share/pyshared/mvpa2/misc/attrmap.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Helper to map literal attribute to numerical ones (and back)"""
import numpy as np
from mvpa2.base.types import is_sequence_type
class AttributeMap(object):
# might be derived from dict, but do not see advantages right now,
# since this one has forward and reverse map
# however, it might be desirable to implement more of the dict interface
"""Map to translate literal values to numeric ones (and back).
A translation map is derived automatically from the argument of the first
call to to_numeric(). The default mapping is to map unique value
(in sorted order) to increasing integer values starting from zero.
In case the default mapping is undesired a custom map can be specified to
the constructor call.
Regardless of how the mapping has been specified or derived, it remains
constant (i.e. it is not influenced by subsequent calls to meth:`to_numeric`
or meth:`to_literal`. However, the translation map can be removed with
meth:`clear`.
Both conversion methods take sequence-like input and return arrays.
Examples
--------
Default mapping procedure using an automatically derived translation map:
>>> am = AttributeMap()
>>> am.to_numeric(['eins', 'zwei', 'drei'])
array([1, 2, 0])
>>> print am.to_literal([1, 2, 0])
['eins' 'zwei' 'drei']
Custom mapping:
>>> am = AttributeMap(map={'eins': 11, 'zwei': 22, 'drei': 33})
>>> am.to_numeric(['eins', 'zwei', 'drei'])
array([11, 22, 33])
"""
def __init__(self, map=None, mapnumeric=False,
collisions_resolution=None):
"""
Parameters
----------
map : dict
Custom dict with literal keys mapping to numerical values.
mapnumeric : bool
In some cases it is necessary to map numeric labels too, for
instance when target labels should be from a specific set,
e.g. (-1, +1).
collisions_resolution : None or {'tuple', 'lucky'}
How to resolve collisions on to_literal if multiple entries
map to the same value when custom map was provided. If None
-- exception would get raise, if 'tuple' -- collided entries
are grouped into a tuple, if 'lucky' -- some last
encountered literal wins (i.e. arbitrary resolution). This
parameter is in effect only when calling :meth:`to_literal`.
Please see the class documentation for more information.
"""
self.clear()
self.mapnumeric = mapnumeric
self.collisions_resolution = collisions_resolution
if not map is None:
if not isinstance(map, dict):
raise ValueError("Custom map need to be a dict.")
self._nmap = map
self._lmap = None # pylint happiness
def __repr__(self):
"""String representation of AttributeMap
"""
args = []
if self._nmap:
args.append(repr(self._nmap)),
if self.mapnumeric:
args.append('mapnumeric=True')
if self.collisions_resolution:
args.append('collisions_resolution=%r'
% (self.collisions_resolution,))
return "%s(%s)" % (self.__class__.__name__, ', '.join(args))
def __len__(self):
if self._nmap is None:
return 0
else:
return len(self._nmap)
def __bool__(self):
return not self._nmap is None
def clear(self):
"""Remove previously established mappings."""
# map from literal TO numeric
self._nmap = None
# map from numeric TO literal
self._lmap = None
def keys(self):
"""Returns the literal names of the attribute map."""
if self._nmap is None:
return None
else:
return self._nmap.keys()
def values(self):
"""Returns the numerical values of the attribute map."""
if self._nmap is None:
return None
else:
return self._nmap.values()
def iteritems(self):
"""Dict-like generator yielding literal/numerical pairs."""
if self._nmap is None:
raise StopIteration
else:
for k, v in self._nmap:
yield k, v
# Py3 Compatibility method to keep lib2to3 happy
items = iteritems
def to_numeric(self, attr):
"""Map literal attribute values to numerical ones.
Arguments with numerical data type will be returned as is.
Parameters
----------
attr : sequence
Literal values to be mapped.
Please see the class documentation for more information.
"""
attr = np.asanyarray(attr)
# no mapping if already numeric
if not np.issubdtype(attr.dtype, str) and not self.mapnumeric:
return attr
if self._nmap is None:
# sorted list of unique attr values
ua = np.unique(attr)
self._nmap = dict(zip(ua, range(len(ua))))
elif __debug__:
ua = np.unique(attr)
mkeys = sorted(self._nmap.keys())
if (ua != mkeys).any():
# maps to not match
raise KeyError("Existing attribute map not suitable for "
"to be mapped attribute (i.e. unknown values. "
"Attribute has '%s', but map has '%s'."
% (str(ua), str(mkeys)))
num = np.empty(attr.shape, dtype=np.int)
for k, v in self._nmap.iteritems():
num[attr == k] = v
return num
def _get_lmap(self):
"""Recomputes lmap from the stored _nmap
"""
cr = self.collisions_resolution
if cr == 'lucky':
lmap = dict([(v, k) for k, v in self._nmap.iteritems()])
elif cr in [None, 'tuple']:
lmap = {}
counts = {} # is used for 'tuple' resolution
for k, v in self._nmap.iteritems():
count = counts.get(v, 0)
if count: # we saw it already
if cr is None:
raise ValueError, \
"Numeric value %r was already reverse mapped to " \
"%r. Now trying to remap into %r. Please adjust" \
" your mapping or change collissions_resolution" \
" parameter" % (v, lmap[v], k)
else:
if count == 1:
lmap[v] = (lmap[v], k)
else:
lmap[v] = lmap[v] + (k, ) # create new tuple
else:
lmap[v] = k
counts[v] = count +1
else:
raise ValueError, \
"Provided parameter collisions_resolution=%r is of unknown " \
"value. See documentation for AttributeMapper" % (cr,)
return lmap
def to_literal(self, attr, recurse=False):
"""Map numerical value back to literal ones.
Parameters
----------
attr : sequence
Numerical values to be mapped.
recurse : bool
Either to recursively change items within the sequence
if those are iterable as well
Please see the class documentation for more information.
"""
# we need one or the other map
if self._lmap is None and self._nmap is None:
raise RuntimeError("AttributeMap has no mapping information. "
"Ever called to_numeric()?")
if self._lmap is None:
self._lmap = self._get_lmap()
lmap = self._lmap
if is_sequence_type(attr) and not isinstance(attr, str):
# Choose lookup function
if recurse:
lookupfx = lambda x: self.to_literal(x, recurse=True)
else:
# just dictionary lookup
lookupfx = lambda x:lmap[x]
# To assure the preserving the container type
target_constr = attr.__class__
# ndarrays are special since array is just a factory, and
# ndarray takes shape as the first argument
isarray = issubclass(target_constr, np.ndarray)
if isarray:
if attr.dtype is np.dtype('object'):
target_constr = lambda x: np.array(x, dtype=object)
else:
# Otherwise no special handling
target_constr = np.array
# Perform lookup and store to the list
resl = [lookupfx(k) for k in attr]
# If necessary assure derived ndarray class type
if isarray:
if attr.dtype is np.dtype('object'):
# we need first to create empty one and then
# assign items -- god bless numpy
resa = np.empty(len(resl), dtype=attr.dtype)
resa[:] = resl
else:
resa = target_constr(resl)
if not (attr.__class__ is np.ndarray):
# to accommodate subclasses of ndarray
res = resa.view(attr.__class__)
else:
res = resa
else:
res = target_constr(resl)
return res
else:
return lmap[attr]
|