This file is indexed.

/usr/share/pyshared/mvpa2/misc/attrmap.py is in python-mvpa2 2.2.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Helper to map literal attribute to numerical ones (and back)"""


import numpy as np
from mvpa2.base.types import is_sequence_type

class AttributeMap(object):
    # might be derived from dict, but do not see advantages right now,
    # since this one has forward and reverse map
    # however, it might be desirable to implement more of the dict interface
    """Map to translate literal values to numeric ones (and back).

    A translation map is derived automatically from the argument of the first
    call to to_numeric(). The default mapping is to map unique value
    (in sorted order) to increasing integer values starting from zero.

    In case the default mapping is undesired a custom map can be specified to
    the constructor call.

    Regardless of how the mapping has been specified or derived, it remains
    constant (i.e. it is not influenced by subsequent calls to meth:`to_numeric`
    or meth:`to_literal`. However, the translation map can be removed with
    meth:`clear`.

    Both conversion methods take sequence-like input and return arrays.

    Examples
    --------

    Default mapping procedure using an automatically derived translation map:

    >>> am = AttributeMap()
    >>> am.to_numeric(['eins', 'zwei', 'drei'])
    array([1, 2, 0])

    >>> print am.to_literal([1, 2, 0])
    ['eins' 'zwei' 'drei']

    Custom mapping:

    >>> am = AttributeMap(map={'eins': 11, 'zwei': 22, 'drei': 33})
    >>> am.to_numeric(['eins', 'zwei', 'drei'])
    array([11, 22, 33])
    """
    def __init__(self, map=None, mapnumeric=False,
                 collisions_resolution=None):
        """
        Parameters
        ----------
        map : dict
          Custom dict with literal keys mapping to numerical values.
        mapnumeric : bool
          In some cases it is necessary to map numeric labels too, for
          instance when target labels should be from a specific set,
          e.g. (-1, +1).
        collisions_resolution : None or {'tuple', 'lucky'}
          How to resolve collisions on to_literal if multiple entries
          map to the same value when custom map was provided.  If None
          -- exception would get raise, if 'tuple' -- collided entries
          are grouped into a tuple, if 'lucky' -- some last
          encountered literal wins (i.e. arbitrary resolution).  This
          parameter is in effect only when calling :meth:`to_literal`.

        Please see the class documentation for more information.
        """
        self.clear()
        self.mapnumeric = mapnumeric
        self.collisions_resolution = collisions_resolution

        if not map is None:
            if not isinstance(map, dict):
                raise ValueError("Custom map need to be a dict.")
            self._nmap = map
        self._lmap = None               # pylint happiness

    def __repr__(self):
        """String representation of AttributeMap
        """
        args = []
        if self._nmap:
            args.append(repr(self._nmap)),
        if self.mapnumeric:
            args.append('mapnumeric=True')
        if self.collisions_resolution:
            args.append('collisions_resolution=%r'
                        % (self.collisions_resolution,))
        return "%s(%s)"  % (self.__class__.__name__, ', '.join(args))

    def __len__(self):
        if self._nmap is None:
            return 0
        else:
            return len(self._nmap)

    def __bool__(self):
        return not self._nmap is None

    def clear(self):
        """Remove previously established mappings."""
        # map from literal TO numeric
        self._nmap = None
        # map from numeric TO literal
        self._lmap = None

    def keys(self):
        """Returns the literal names of the attribute map."""
        if self._nmap is None:
            return None
        else:
            return self._nmap.keys()

    def values(self):
        """Returns the numerical values of the attribute map."""
        if self._nmap is None:
            return None
        else:
            return self._nmap.values()

    def iteritems(self):
        """Dict-like generator yielding literal/numerical pairs."""
        if self._nmap is None:
            raise StopIteration
        else:
            for k, v in self._nmap:
                yield k, v

    # Py3 Compatibility method to keep lib2to3 happy
    items = iteritems
    
    def to_numeric(self, attr):
        """Map literal attribute values to numerical ones.

        Arguments with numerical data type will be returned as is.

        Parameters
        ----------
        attr : sequence
          Literal values to be mapped.

        Please see the class documentation for more information.
        """
        attr = np.asanyarray(attr)

        # no mapping if already numeric
        if not np.issubdtype(attr.dtype, str) and not self.mapnumeric:
            return attr

        if self._nmap is None:
            # sorted list of unique attr values
            ua = np.unique(attr)
            self._nmap = dict(zip(ua, range(len(ua))))
        elif __debug__:
            ua = np.unique(attr)
            mkeys = sorted(self._nmap.keys())
            if (ua != mkeys).any():
                # maps to not match
                raise KeyError("Existing attribute map not suitable for "
                        "to be mapped attribute (i.e. unknown values. "
                        "Attribute has '%s', but map has '%s'."
                        % (str(ua), str(mkeys)))


        num = np.empty(attr.shape, dtype=np.int)
        for k, v in self._nmap.iteritems():
            num[attr == k] = v
        return num

    def _get_lmap(self):
        """Recomputes lmap from the stored _nmap
        """
        cr = self.collisions_resolution
        if cr == 'lucky':
            lmap = dict([(v, k) for k, v in self._nmap.iteritems()])
        elif cr in [None, 'tuple']:
            lmap = {}
            counts = {}                     # is used for 'tuple' resolution
            for k, v in self._nmap.iteritems():
                count = counts.get(v, 0)
                if count:               # we saw it already
                    if cr is None:
                        raise ValueError, \
                            "Numeric value %r was already reverse mapped to " \
                            "%r.  Now trying to remap into %r.  Please adjust" \
                            " your mapping or change collissions_resolution" \
                            " parameter" % (v, lmap[v], k)
                    else:
                        if count == 1:
                            lmap[v] = (lmap[v], k)
                        else:
                            lmap[v] = lmap[v] + (k, ) # create new tuple
                else:
                    lmap[v] = k
                counts[v] = count +1
        else:
            raise ValueError, \
                  "Provided parameter collisions_resolution=%r is of unknown " \
                  "value. See documentation for AttributeMapper" % (cr,)
        return lmap

    def to_literal(self, attr, recurse=False):
        """Map numerical value back to literal ones.

        Parameters
        ----------
        attr : sequence
          Numerical values to be mapped.
        recurse : bool
          Either to recursively change items within the sequence
          if those are iterable as well

        Please see the class documentation for more information.
        """
        # we need one or the other map
        if self._lmap is None and self._nmap is None:
            raise RuntimeError("AttributeMap has no mapping information. "
                               "Ever called to_numeric()?")

        if self._lmap is None:
            self._lmap = self._get_lmap()

        lmap = self._lmap

        if is_sequence_type(attr) and not isinstance(attr, str):
            # Choose lookup function
            if recurse:
                lookupfx = lambda x: self.to_literal(x, recurse=True)
            else:
                # just dictionary lookup
                lookupfx = lambda x:lmap[x]

            # To assure the preserving the container type
            target_constr = attr.__class__
            # ndarrays are special since array is just a factory, and
            # ndarray takes shape as the first argument
            isarray = issubclass(target_constr, np.ndarray)
            if isarray:
                if attr.dtype is np.dtype('object'):
                    target_constr = lambda x: np.array(x, dtype=object)
                else:
                    # Otherwise no special handling
                    target_constr = np.array

            # Perform lookup and store to the list
            resl = [lookupfx(k) for k in attr]

            # If necessary assure derived ndarray class type
            if isarray:
                if attr.dtype is np.dtype('object'):
                    # we need first to create empty one and then
                    # assign items -- god bless numpy
                    resa = np.empty(len(resl), dtype=attr.dtype)
                    resa[:] = resl
                else:
                    resa = target_constr(resl)

                if not (attr.__class__ is np.ndarray):
                    # to accommodate subclasses of ndarray
                    res = resa.view(attr.__class__)
                else:
                    res = resa
            else:
                res = target_constr(resl)

            return res
        else:
            return lmap[attr]