This file is indexed.

/usr/share/pyshared/mvpa2/measures/searchlight.py is in python-mvpa2 2.2.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Implementation of the Searchlight algorithm"""

__docformat__ = 'restructuredtext'

if __debug__:
    from mvpa2.base import debug

import numpy as np
import tempfile, os

from mvpa2.base import externals, warning
from mvpa2.base.dochelpers import borrowkwargs, _repr_attrs
from mvpa2.base.types import is_datasetlike
if externals.exists('h5py'):
    # Is optionally required for passing searchlight
    # results via storing/reloading hdf5 files
    from mvpa2.base.hdf5 import h5save, h5load

from mvpa2.datasets import hstack, Dataset
from mvpa2.support import copy
from mvpa2.featsel.base import StaticFeatureSelection
from mvpa2.measures.base import Measure
from mvpa2.base.state import ConditionalAttribute
from mvpa2.misc.neighborhood import IndexQueryEngine, Sphere


class BaseSearchlight(Measure):
    """Base class for searchlights.

    The idea for a searchlight algorithm stems from a paper by
    :ref:`Kriegeskorte et al. (2006) <KGB06>`.
    """

    roi_sizes = ConditionalAttribute(enabled=False,
        doc="Number of features in each ROI.")

    roi_feature_ids = ConditionalAttribute(enabled=False,
        doc="Feature IDs for all generated ROIs.")

    is_trained = True
    """Indicate that this measure is always trained."""


    def __init__(self, queryengine, roi_ids=None, nproc=None,
                 **kwargs):
        """
        Parameters
        ----------
        queryengine : QueryEngine
          Engine to use to discover the "neighborhood" of each feature.
          See :class:`~mvpa2.misc.neighborhood.QueryEngine`.
        roi_ids : None or list(int) or str
          List of feature ids (not coordinates) the shall serve as ROI seeds
          (e.g. sphere centers). Alternatively, this can be the name of a
          feature attribute of the input dataset, whose non-zero values
          determine the feature ids. By default all features will be used.
        nproc : None or int
          How many processes to use for computation.  Requires `pprocess`
          external module.  If None -- all available cores will be used.
        **kwargs
          In addition this class supports all keyword arguments of its
          base-class :class:`~mvpa2.measures.base.Measure`.
      """
        Measure.__init__(self, **kwargs)

        if nproc is not None and nproc > 1 and not externals.exists('pprocess'):
            raise RuntimeError("The 'pprocess' module is required for "
                               "multiprocess searchlights. Please either "
                               "install python-pprocess, or reduce `nproc` "
                               "to 1 (got nproc=%i)" % nproc)

        self._queryengine = queryengine
        if roi_ids is not None and not isinstance(roi_ids, str) \
                and not len(roi_ids):
            raise ValueError, \
                  "Cannot run searchlight on an empty list of roi_ids"
        self.__roi_ids = roi_ids
        self.nproc = nproc


    def __repr__(self, prefixes=[]):
        """String representation of a `Measure`

        Includes only arguments which differ from default ones
        """
        return super(BaseSearchlight, self).__repr__(
            prefixes=prefixes
            + _repr_attrs(self, ['queryengine', 'roi_ids', 'nproc']))


    def _call(self, dataset):
        """Perform the ROI search.
        """
        # local binding
        nproc = self.nproc

        if nproc is None and externals.exists('pprocess'):
            import pprocess
            try:
                nproc = pprocess.get_number_of_cores() or 1
            except AttributeError:
                warning("pprocess version %s has no API to figure out maximal "
                        "number of cores. Using 1"
                        % externals.versions['pprocess'])
                nproc = 1
        # train the queryengine
        self._queryengine.train(dataset)

        # decide whether to run on all possible center coords or just a provided
        # subset
        if isinstance(self.__roi_ids, str):
            roi_ids = dataset.fa[self.__roi_ids].value.nonzero()[0]
        elif self.__roi_ids is not None:
            roi_ids = self.__roi_ids
            # safeguard against stupidity
            if __debug__:
                if max(roi_ids) >= dataset.nfeatures:
                    raise IndexError, \
                          "Maximal center_id found is %s whenever given " \
                          "dataset has only %d features" \
                          % (max(roi_ids), dataset.nfeatures)
        else:
            roi_ids = np.arange(dataset.nfeatures)

        # pass to subclass
        results = self._sl_call(dataset, roi_ids, nproc)

        if 'mapper' in dataset.a:
            # since we know the space we can stick the original mapper into the
            # results as well
            if self.__roi_ids is None:
                results.a['mapper'] = copy.copy(dataset.a.mapper)
            else:
                # there is an additional selection step that needs to be
                # expressed by another mapper
                mapper = copy.copy(dataset.a.mapper)
                mapper.append(StaticFeatureSelection(roi_ids,
                                                     dshape=dataset.shape[1:]))
                results.a['mapper'] = mapper

        # charge state
        self.ca.raw_results = results

        # return raw results, base-class will take care of transformations
        return results


    def _sl_call(self, dataset, roi_ids, nproc):
        """Classical generic searchlight implementation
        """
        raise NotImplementedError("Must be implemented in the derived classes")

    queryengine = property(fget=lambda self: self._queryengine)
    roi_ids = property(fget=lambda self: self.__roi_ids)


class Searchlight(BaseSearchlight):
    """The implementation of a generic searchlight measure.

    The idea for a searchlight algorithm stems from a paper by
    :ref:`Kriegeskorte et al. (2006) <KGB06>`.  As a result it
    produces a map of measures given a `datameasure` instance of
    interest, which is ran at each spatial location.
    """

    @staticmethod
    def _concat_results(sl=None, dataset=None, roi_ids=None, results=None):
        """The simplest implementation for collecting the results --
        just put them into a list

        This this implementation simply collects them into a list and
        uses only sl. for assigning conditional attributes.  But
        custom implementation might make use of more/less of them.
        Implemented as @staticmethod just to emphasize that in
        principle it is independent of the actual searchlight instance
        """
        # collect results
        results = sum(results, [])

        if __debug__ and 'SLC' in debug.active:
            debug('SLC', '')            # just newline
            resshape = len(results) and np.asanyarray(results[0]).shape or 'N/A'
            debug('SLC', ' hstacking %d results of shape %s'
                  % (len(results), resshape))

        # but be careful: this call also serves as conversion from parallel maps
        # to regular lists!
        # this uses the Dataset-hstack
        result_ds = hstack(results)

        if __debug__:
            debug('SLC', " hstacked shape %s" % (result_ds.shape,))

        if sl.ca.is_enabled('roi_feature_ids'):
            sl.ca.roi_feature_ids = [r.a.roi_feature_ids for r in results]
        if sl.ca.is_enabled('roi_sizes'):
            sl.ca.roi_sizes = [r.a.roi_sizes for r in results]

        return result_ds


    def __init__(self, datameasure, queryengine, add_center_fa=False,
                 results_backend='native',
                 results_fx=None,
                 tmp_prefix='tmpsl',
                 nblocks=None,
                 **kwargs):
        """
        Parameters
        ----------
        datameasure : callable
          Any object that takes a :class:`~mvpa2.datasets.base.Dataset`
          and returns some measure when called.
        add_center_fa : bool or str
          If True or a string, each searchlight ROI dataset will have a boolean
          vector as a feature attribute that indicates the feature that is the
          seed (e.g. sphere center) for the respective ROI. If True, the
          attribute is named 'roi_seed', the provided string is used as the name
          otherwise.
        results_backend : ('native', 'hdf5'), optional
          Specifies the way results are provided back from a processing block
          in case of nproc > 1. 'native' is pickling/unpickling of results by
          pprocess, while 'hdf5' would use h5save/h5load functionality.
          'hdf5' might be more time and memory efficient in some cases.
        results_fx : callable, optional
          Function to process/combine results of each searchlight
          block run.  By default it would simply append them all into
          the list.  It receives as keyword arguments sl, dataset,
          roi_ids, and results (iterable of lists).  It is the one to take
          care of assigning roi_* ca's
        tmp_prefix : str, optional
          If specified -- serves as a prefix for temporary files storage
          if results_backend == 'hdf5'.  Thus can specify the directory to use
          (trailing file path separator is not added automagically).
        nblocks : None or int
          Into how many blocks to split the computation (could be larger than
          nproc).  If None -- nproc is used.
        **kwargs
          In addition this class supports all keyword arguments of its
          base-class :class:`~mvpa2.measures.searchlight.BaseSearchlight`.
        """
        BaseSearchlight.__init__(self, queryengine, **kwargs)
        self.datameasure = datameasure
        self.results_backend = results_backend.lower()
        if self.results_backend == 'hdf5':
            # Assure having hdf5
            externals.exists('h5py', raise_=True)
        self.results_fx = Searchlight._concat_results \
                          if results_fx is None else results_fx
        self.tmp_prefix = tmp_prefix
        self.nblocks = nblocks
        if isinstance(add_center_fa, str):
            self.__add_center_fa = add_center_fa
        elif add_center_fa:
            self.__add_center_fa = 'roi_seed'
        else:
            self.__add_center_fa = False

    def __repr__(self, prefixes=[]):
        return super(Searchlight, self).__repr__(
            prefixes=prefixes
            + _repr_attrs(self, ['datameasure'])
            + _repr_attrs(self, ['add_center_fa'], default=False)
            + _repr_attrs(self, ['results_backend'], default='native')
            + _repr_attrs(self, ['results_fx', 'nblocks'])
            )


    def _sl_call(self, dataset, roi_ids, nproc):
        """Classical generic searchlight implementation
        """
        assert(self.results_backend in ('native', 'hdf5'))
        # compute
        if nproc is not None and nproc > 1:
            # split all target ROIs centers into `nproc` equally sized blocks
            nproc_needed = min(len(roi_ids), nproc)
            nblocks = nproc_needed \
                      if self.nblocks is None else self.nblocks
            roi_blocks = np.array_split(roi_ids, nblocks)

            # the next block sets up the infrastructure for parallel computing
            # this can easily be changed into a ParallelPython loop, if we
            # decide to have a PP job server in PyMVPA
            import pprocess
            p_results = pprocess.Map(limit=nproc_needed)
            if __debug__:
                debug('SLC', "Starting off %s child processes for nblocks=%i"
                      % (nproc_needed, nblocks))
            compute = p_results.manage(
                        pprocess.MakeParallel(self._proc_block))
            for iblock, block in enumerate(roi_blocks):
                # should we maybe deepcopy the measure to have a unique and
                # independent one per process?
                compute(block, dataset, copy.copy(self.__datameasure),
                        iblock=iblock)
        else:
            # otherwise collect the results in an 1-item list
            p_results = [
                    self._proc_block(roi_ids, dataset, self.__datameasure)]

        # Finally collect and possibly process results
        # p_results here is either a generator from pprocess.Map or a list.
        # In case of a generator it allows to process results as they become
        # available
        result_ds = self.results_fx(sl=self,
                                    dataset=dataset,
                                    roi_ids=roi_ids,
                                    results=self.__handle_all_results(p_results))

        # Assure having a dataset (for paranoid ones)
        if not is_datasetlike(result_ds):
            try:
                result_a = np.atleast_1d(result_ds)
            except ValueError, e:
                if 'setting an array element with a sequence' in str(e):
                    # try forcing object array.  Happens with
                    # test_custom_results_fx_logic on numpy 1.4.1 on Debian
                    # squeeze
                    result_a = np.array(result_ds, dtype=object)
                else:
                    raise
            result_ds = Dataset(result_a)

        return result_ds


    def _proc_block(self, block, ds, measure, iblock='main'):
        """Little helper to capture the parts of the computation that can be
        parallelized

        Parameters
        ----------
        iblock
          Critical for generating non-colliding temp filenames in case
          of hdf5 backend.  Otherwise RNGs of different processes might
          collide in their temporary file names leading to problems.
        """
        if __debug__:
            debug_slc_ = 'SLC_' in debug.active
            debug('SLC',
                  "Starting computing block for %i elements" % len(block))
        results = []
        store_roi_feature_ids = self.ca.is_enabled('roi_feature_ids')
        store_roi_sizes = self.ca.is_enabled('roi_sizes')
        assure_dataset = store_roi_feature_ids or store_roi_sizes
        # put rois around all features in the dataset and compute the
        # measure within them
        for i, f in enumerate(block):
            # retrieve the feature ids of all features in the ROI from the query
            # engine
            roi_fids = self._queryengine[f]

            if __debug__ and  debug_slc_:
                debug('SLC_', 'For %r query returned ids %r' % (f, roi_fids))

            # slice the dataset
            roi = ds[:, roi_fids]

            if self.__add_center_fa:
                # add fa to indicate ROI seed if requested
                roi_seed = np.zeros(roi.nfeatures, dtype='bool')
                roi_seed[roi_fids.index(f)] = True
                roi.fa[self.__add_center_fa] = roi_seed

            # compute the datameasure and store in results
            res = measure(roi)

            if assure_dataset and not is_datasetlike(res):
                res = Dataset(np.atleast_1d(res))
            if store_roi_feature_ids:
                # add roi feature ids to intermediate result dataset for later
                # aggregation
                res.a['roi_feature_ids'] = roi_fids
            if store_roi_sizes:
                res.a['roi_sizes'] = roi.nfeatures
            results.append(res)

            if __debug__:
                debug('SLC', "Doing %i ROIs: %i (%i features) [%i%%]" \
                    % (len(block),
                       f+1,
                       roi.nfeatures,
                       float(i+1)/len(block)*100,), cr=True)

        if self.results_backend == 'native':
            pass                        # nothing special
        elif self.results_backend == 'hdf5':
            # store results in a temporary file and return a filename
            results_file = tempfile.mktemp(prefix=self.tmp_prefix,
                                           suffix='-%s.hdf5' % iblock)
            if __debug__:
                debug('SLC', "Storing results into %s" % results_file)
            h5save(results_file, results)
            if __debug__:
                debug('SLC_', "Results stored")
            results = results_file
        else:
            raise RuntimeError("Must not reach this point")
        return results


    def __set_datameasure(self, datameasure):
        """Set the datameasure"""
        self.untrain()
        self.__datameasure = datameasure

    def __handle_results(self, results):
        if self.results_backend == 'hdf5':
            # 'results' must be just a filename
            assert(isinstance(results, str))
            if __debug__:
                debug('SLC', "Loading results from %s" % results)
            results_data = h5load(results)
            os.unlink(results)
            if __debug__:
                debug('SLC_', "Loaded results of len=%d from"
                      % len(results_data))
            return results_data
        else:
            return results

    def __handle_all_results(self, results):
        """Helper generator to decorate passing the results out to
        results_fx
        """
        for r in results:
            yield self.__handle_results(r)


    datameasure = property(fget=lambda self: self.__datameasure,
                           fset=__set_datameasure)
    add_center_fa = property(fget=lambda self: self.__add_center_fa)

@borrowkwargs(Searchlight, '__init__', exclude=['roi_ids'])
def sphere_searchlight(datameasure, radius=1, center_ids=None,
                       space='voxel_indices', **kwargs):
    """Creates a `Searchlight` to run a scalar `Measure` on
    all possible spheres of a certain size within a dataset.

    The idea for a searchlight algorithm stems from a paper by
    :ref:`Kriegeskorte et al. (2006) <KGB06>`.

    Parameters
    ----------
    datameasure : callable
      Any object that takes a :class:`~mvpa2.datasets.base.Dataset`
      and returns some measure when called.
    radius : int
      All features within this radius around the center will be part
      of a sphere. Radius is in grid-indices, i.e. ``1`` corresponds
      to all immediate neighbors, regardless of the physical distance.
    center_ids : list of int
      List of feature ids (not coordinates) the shall serve as sphere
      centers. Alternatively, this can be the name of a feature attribute
      of the input dataset, whose non-zero values determine the feature
      ids.  By default all features will be used (it is passed as ``roi_ids``
      argument of Searchlight).
    space : str
      Name of a feature attribute of the input dataset that defines the spatial
      coordinates of all features.
    **kwargs
      In addition this class supports all keyword arguments of its
      base-class :class:`~mvpa2.measures.base.Measure`.

    Notes
    -----
    If `Searchlight` is used as `SensitivityAnalyzer` one has to make
    sure that the specified scalar `Measure` returns large
    (absolute) values for high sensitivities and small (absolute) values
    for low sensitivities. Especially when using error functions usually
    low values imply high performance and therefore high sensitivity.
    This would in turn result in sensitivity maps that have low
    (absolute) values indicating high sensitivities and this conflicts
    with the intended behavior of a `SensitivityAnalyzer`.
    """
    # build a matching query engine from the arguments
    kwa = {space: Sphere(radius)}
    qe = IndexQueryEngine(**kwa)
    # init the searchlight with the queryengine
    return Searchlight(datameasure, queryengine=qe, roi_ids=center_ids,
                       **kwargs)


#class OptimalSearchlight( object ):
#    def __init__( self,
#                  searchlight,
#                  test_radii,
#                  verbose=False,
#                  **kwargs ):
#        """
#        """
#        # results will end up here
#        self.__perfmeans = []
#        self.__perfvars = []
#        self.__chisquares = []
#        self.__chanceprobs = []
#        self.__spheresizes = []
#
#        # run searchligh for all radii in the list
#        for radius in test_radii:
#            if verbose:
#                print 'Using searchlight with radius:', radius
#            # compute the results
#            searchlight( radius, **(kwargs) )
#
#            self.__perfmeans.append( searchlight.perfmean )
#            self.__perfvars.append( searchlight.perfvar )
#            self.__chisquares.append( searchlight.chisquare )
#            self.__chanceprobs.append( searchlight.chanceprob )
#            self.__spheresizes.append( searchlight.spheresize )
#
#
#        # now determine the best classification accuracy
#        best = np.array(self.__perfmeans).argmax( axis=0 )
#
#        # select the corresponding values of the best classification
#        # in all data tables
#        self.perfmean   = best.choose(*(self.__perfmeans))
#        self.perfvar    = best.choose(*(self.__perfvars))
#        self.chisquare  = best.choose(*(self.__chisquares))
#        self.chanceprob = best.choose(*(self.__chanceprobs))
#        self.spheresize = best.choose(*(self.__spheresizes))
#
#        # store the best performing radius
#        self.bestradius = np.zeros( self.perfmean.shape, dtype='uint' )
#        self.bestradius[searchlight.mask==True] = \
#            best.choose( test_radii )[searchlight.mask==True]
#
#
#
#def makeSphericalROIMask( mask, radius, elementsize=None ):
#    """
#    """
#    # use default elementsize if none is supplied
#    if not elementsize:
#        elementsize = [ 1 for i in range( len(mask.shape) ) ]
#    else:
#        if len( elementsize ) != len( mask.shape ):
#            raise ValueError, 'elementsize does not match mask dimensions.'
#
#    # rois will be drawn into this mask
#    roi_mask = np.zeros( mask.shape, dtype='int32' )
#
#    # while increase with every ROI
#    roi_id_counter = 1
#
#    # build spheres around every non-zero value in the mask
#    for center, spheremask in \
#        algorithms.SpheresInMask( mask,
#                                  radius,
#                                  elementsize,
#                                  forcesphere = True ):
#
#        # set all elements that match the current spheremask to the
#        # current ROI index value
#        roi_mask[spheremask] = roi_id_counter
#
#        # increase ROI counter
#        roi_id_counter += 1
#
#    return roi_mask