This file is indexed.

/usr/share/pyshared/mvpa2/measures/rsm.py is in python-mvpa2 2.2.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Similarity measure correlation computed over all
subjects
"""

__docformat__ = 'restructuredtext'

import numpy as np
from mvpa2.measures.base import Measure
from mvpa2.misc.stats import DSMatrix
from mvpa2.datasets.base import Dataset
import copy

class RSMMeasure(Measure):
    """RSMMeasure creates a DatasetMeasure object
       where metric can be one of 'euclidean', 'spearman', 'pearson'
       or 'confusion' and nsubjs has to be number of subjects
       and compare_ave flag determines whether to correlate with
       average of all other subjects or just one-to-one
       k should be 0 to n 0-to use DSM including diagonal 
       """

    def __init__(self, dset_metric, nsubjs, compare_ave, k, **kwargs):
        Measure.__init__(self,  **kwargs)

        self.dset_metric = dset_metric
        self.dset_dsm = []
        self.nsubjs = nsubjs
        self.compare_ave = compare_ave
        self.k = k


    def __call__(self, dataset):
        dsm_all = []
        rsm_all = []
        nsubjs = self.nsubjs
        # create the dissimilarity matrix for each subject's data in the input dataset
        ''' TODO: How to handle Nan? should we uncomment the workarounds?
        '''
        for i in xrange(nsubjs):
            if self.dset_metric == 'pearson':
                self.dset_dsm = np.corrcoef(dataset.samples[i*dataset.nsamples/nsubjs:((i+1)*dataset.nsamples/nsubjs),:])
            else:
                self.dset_dsm = DSMatrix(dataset.samples[i*dataset.nsamples/nsubjs:((i+1)*dataset.nsamples/nsubjs),:], self.dset_metric)
                self.dset_dsm = self.dset_dsm.full_matrix
            orig_dsmatrix = copy.deepcopy(np.matrix(self.dset_dsm))
            #orig_dsmatrix[np.isnan(orig_dsmatrix)] = 0
            #orig_dsmatrix[orig_dsmatrix == 0] = -2
            #orig_tri = np.triu(orig_dsmatrix, k=self.k)
            #vector_form = orig_tri[abs(orig_tri) > 0]
            #vector_form[vector_form == -2] = 0
            vector_form = orig_dsmatrix[np.tri(len(orig_dsmatrix),k=-1*self.k,dtype=bool)]
            vector_form = np.asarray(vector_form)
            dset_vec = vector_form[0]
            dsm_all.append(dset_vec)
        dsm_all = np.vstack(dsm_all)
        #print dsm_all.shape
        if self.compare_ave:
            for i in xrange(nsubjs):
                dsm_temp = nsubjs*np.mean(dsm_all, axis=0) - dsm_all[i,:]
                rsm = np.corrcoef(dsm_temp, dsm_all[i,:])
                rsm_all.append(rsm[0,1])
        else:
            rsm = np.corrcoef(dsm_all)
            rsm = np.matrix(rsm)
            #rsm[np.isnan(rsm)] = 0
            #rsm[rsm == 0] = -2
            #rsm = np.triu(rsm, k=1)
            #rsm = rsm[abs(rsm) > 0]
            #rsm[rsm == -2] = 0
            rsm = rsm[np.tri(len(rsm),k=-1,dtype=bool)]
            rsm = np.asarray(rsm)
            rsm_all = rsm[0]

        return Dataset(rsm_all)