/usr/share/pyshared/mvpa2/measures/ismooth.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""iSmooth - An intelligent smoothing measure.
"""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.measures.base import Measure
from mvpa2.datasets.base import Dataset
from mvpa2.mappers.zscore import zscore
import copy
from numpy.linalg import LinAlgError
class iSmooth(Measure):
"""iSmooth smooths a Dataset
using searchlight
params:
model = 'regression' or 'correlation'
correlation code is commented for speed(?)
cthresh = minimum variance threshold to change timeseries
default=0.10
if -1 is given, then the weight is defaulted
to 4mm FWMH Gaussian kernel weight
for 3mm voxels, which is 0.241275
'"""
def __init__(self, model='regression', cthresh=0.10):
Measure.__init__(self)
self.cthresh = cthresh
self.model = model
def __call__(self, dataset):
#if self.model == 'correlation':
# orig_ds = copy.deepcopy(dataset)
# zscore(orig_ds, chunks_attr=None)
# ref_ts = orig_ds[:,orig_ds.fa.roi_seed].samples
# corrs = np.mat(ref_ts).T*np.mat(orig_ds.samples)/orig_ds.nsamples
# corrs[np.isnan(corrs)] = 0
# corrs[abs(corrs)<self.cthresh] = 0
# corrs = corrs/np.sum(corrs)
# return Dataset(np.asarray(np.mat(orig_ds.samples)*corrs.T))
#elif self.model == 'regression':
X = np.mat(dataset[:, dataset.fa.roi_seed!=True].samples)
y = np.mat(dataset[:, dataset.fa.roi_seed==True].samples)
try:
Xi = np.linalg.pinv(X, 1e-5)
r = y.T*X*Xi*y
r = r[0,0]**2
except LinAlgError:
r = -1000
if r >= self.cthresh:
if self.cthresh>=0:
ym = (y + r*(X*Xi*y))/(1+r)
else:
ym = (0.241275*y + 0.758725*(X*Xi*y))
return Dataset(np.asarray(ym))
else:
return Dataset(np.asarray(y))
|