/usr/share/pyshared/mvpa2/measures/base.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Base classes for measures: algorithms that quantify properties of datasets.
Besides the `Measure` base class this module also provides the
(abstract) `FeaturewiseMeasure` class. The difference between a general
measure and the output of the `FeaturewiseMeasure` is that the latter
returns a 1d map (one value per feature in the dataset). In contrast there are
no restrictions on the returned value of `Measure` except for that it
has to be in some iterable container.
"""
__docformat__ = 'restructuredtext'
import numpy as np
import mvpa2.support.copy as copy
from mvpa2.base.node import Node
from mvpa2.base.learner import Learner
from mvpa2.base.state import ConditionalAttribute
from mvpa2.misc.args import group_kwargs
from mvpa2.misc.attrmap import AttributeMap
from mvpa2.misc.errorfx import mean_mismatch_error
from mvpa2.base.types import asobjarray
from mvpa2.base.dochelpers import enhanced_doc_string, _str, _repr_attrs
from mvpa2.base import externals, warning
from mvpa2.clfs.stats import auto_null_dist
from mvpa2.base.dataset import AttrDataset
from mvpa2.datasets import Dataset, vstack, hstack
from mvpa2.mappers.fx import BinaryFxNode
from mvpa2.generators.splitters import Splitter
if __debug__:
from mvpa2.base import debug
class Measure(Learner):
"""A measure computed from a `Dataset`
All dataset measures support arbitrary transformation of the measure
after it has been computed. Transformation are done by processing the
measure with a functor that is specified via the `transformer` keyword
argument of the constructor. Upon request, the raw measure (before
transformations are applied) is stored in the `raw_results` conditional attribute.
Additionally all dataset measures support the estimation of the
probabilit(y,ies) of a measure under some distribution. Typically this will
be the NULL distribution (no signal), that can be estimated with
permutation tests. If a distribution estimator instance is passed to the
`null_dist` keyword argument of the constructor the respective
probabilities are automatically computed and stored in the `null_prob`
conditional attribute.
Notes
-----
For developers: All subclasses shall get all necessary parameters via
their constructor, so it is possible to get the same type of measure for
multiple datasets by passing them to the __call__() method successively.
"""
null_prob = ConditionalAttribute(enabled=True)
"""Stores the probability of a measure under the NULL hypothesis"""
null_t = ConditionalAttribute(enabled=False)
"""Stores the t-score corresponding to null_prob under assumption
of Normal distribution"""
def __init__(self, null_dist=None, **kwargs):
"""
Parameters
----------
null_dist : instance of distribution estimator
The estimated distribution is used to assign a probability for a
certain value of the computed measure.
"""
Learner.__init__(self, **kwargs)
null_dist_ = auto_null_dist(null_dist)
if __debug__:
debug('SA', 'Assigning null_dist %s whenever original given was %s'
% (null_dist_, null_dist))
self.__null_dist = null_dist_
__doc__ = enhanced_doc_string('Measure', locals(),
Learner)
def __repr__(self, prefixes=[]):
"""String representation of a `Measure`
Includes only arguments which differ from default ones
"""
return super(Measure, self).__repr__(
prefixes=prefixes
+ _repr_attrs(self, ['null_dist']))
def _precall(self, ds):
# estimate the NULL distribution when functor is given
if not self.__null_dist is None:
if __debug__:
debug("STAT", "Estimating NULL distribution using %s"
% self.__null_dist)
# we need a matching measure instance, but we have to disable
# the estimation of the null distribution in that child to prevent
# infinite looping.
measure = copy.copy(self)
measure.__null_dist = None
self.__null_dist.fit(measure, ds)
def _postcall(self, dataset, result):
"""Some postprocessing on the result
"""
# post-processing
result = super(Measure, self)._postcall(dataset, result)
if not self.__null_dist is None:
if self.ca.is_enabled('null_t'):
# get probability under NULL hyp, but also request
# either it belong to the right tail
null_prob, null_right_tail = \
self.__null_dist.p(result, return_tails=True)
self.ca.null_prob = null_prob
externals.exists('scipy', raise_=True)
from scipy.stats import norm
# TODO: following logic should appear in NullDist,
# not here
tail = self.null_dist.tail
if tail == 'left':
acdf = np.abs(null_prob.samples)
elif tail == 'right':
acdf = 1.0 - np.abs(null_prob.samples)
elif tail in ['any', 'both']:
acdf = 1.0 - np.clip(np.abs(null_prob.samples), 0, 0.5)
else:
raise RuntimeError, 'Unhandled tail %s' % tail
# We need to clip to avoid non-informative inf's ;-)
# that happens due to lack of precision in mantissa
# which is 11 bits in double. We could clip values
# around 0 at as low as 1e-100 (correspond to z~=21),
# but for consistency lets clip at 1e-16 which leads
# to distinguishable value around p=1 and max z=8.2.
# Should be sufficient range of z-values ;-)
clip = 1e-16
null_t = norm.ppf(np.clip(acdf, clip, 1.0 - clip))
# assure that we deal with arrays:
null_t = np.array(null_t, ndmin=1, copy=False)
null_t[~null_right_tail] *= -1.0 # revert sign for negatives
null_t_ds = null_prob.copy(deep=False)
null_t_ds.samples = null_t
self.ca.null_t = null_t_ds # store as a Dataset
else:
# get probability of result under NULL hypothesis if available
# and don't request tail information
self.ca.null_prob = self.__null_dist.p(result)
return result
@property
def null_dist(self):
"""Return Null Distribution estimator"""
return self.__null_dist
class ProxyMeasure(Measure):
"""Wrapper to allow for alternative post-processing of a shared measure.
This class is useful whenever a measure (or for example a trained
classifier) shall be utilized in multiple nodes, but each node needs to
perform its on post-processing of results. One can simply wrap the
measure into this class and assign arbitrary post-processing nodes to the
wrapper, instead of the measure itself.
"""
def __init__(self, measure, **kwargs):
# by default auto train
kwargs['auto_train'] = kwargs.get('auto_train', True)
Measure.__init__(self, **kwargs)
self.__measure = measure
def __repr__(self, prefixes=[]):
"""String representation of a `ProxyMeasure`
"""
return super(ProxyMeasure, self).__repr__(
prefixes=prefixes
+ _repr_attrs(self, ['measure']))
def _train(self, ds):
self.measure.train(ds)
def _call(self, ds):
return self.measure(ds)
@property
def measure(self):
"""Return proxied measure"""
return self.__measure
class RepeatedMeasure(Measure):
"""Repeatedly run a measure on generated dataset.
A measure is ran multiple times on datasets yielded by a custom generator.
Results of all measure runs are stacked and returned as a dataset upon call.
"""
repetition_results = ConditionalAttribute(enabled=False, doc=
"""Store individual result datasets for each repetition""")
stats = ConditionalAttribute(enabled=False, doc=
"""Summary statistics about the node performance across all repetitions
""")
datasets = ConditionalAttribute(enabled=False, doc=
"""Store generated datasets for all repetitions. Can be memory expensive
""")
is_trained = True
"""Indicate that this measure is always trained."""
def __init__(self,
node,
generator,
callback=None,
concat_as='samples',
**kwargs):
"""
Parameters
----------
node : Node
Node or Measure implementing the procedure that is supposed to be run
multiple times.
generator : Node
Generator to yield a dataset for each measure run. The number of
datasets returned by the node determines the number of runs.
callback : functor
Optional callback to extract information from inside the main loop of
the measure. The callback is called with the input 'data', the 'node'
instance that is evaluated repeatedly and the 'result' of a single
evaluation -- passed as named arguments (see labels in quotes) for
every iteration, directly after evaluating the node.
concat_as : {'samples', 'features'}
Along which axis to concatenate result dataset from all iterations.
By default, results are 'vstacked' as multiple samples in the output
dataset. Setting this argument to 'features' will change this to
'hstacking' along the feature axis.
"""
Measure.__init__(self, **kwargs)
self._node = node
self._generator = generator
self._callback = callback
self._concat_as = concat_as
def __repr__(self, prefixes=[], exclude=[]):
return super(RepeatedMeasure, self).__repr__(
prefixes=prefixes
+ _repr_attrs(self, [x for x in ['node', 'generator', 'callback']
if not x in exclude])
+ _repr_attrs(self, ['concat_as'], default='samples')
)
def _call(self, ds):
# local binding
generator = self._generator
node = self._node
ca = self.ca
space = self.get_space()
concat_as = self._concat_as
if self.ca.is_enabled("stats") and (not node.ca.has_key("stats") or
not node.ca.is_enabled("stats")):
warning("'stats' conditional attribute was enabled, but "
"the assigned node '%s' either doesn't support it, "
"or it is disabled" % node)
# precharge conditional attributes
ca.datasets = []
# run the node an all generated datasets
results = []
for i, sds in enumerate(generator.generate(ds)):
if __debug__:
debug('REPM', "%d-th iteration of %s on %s",
(i, self, sds))
if ca.is_enabled("datasets"):
# store dataset in ca
ca.datasets.append(sds)
# run the beast
result = node(sds)
# callback
if not self._callback is None:
self._callback(data=sds, node=node, result=result)
# subclass postprocessing
result = self._repetition_postcall(sds, node, result)
if space:
# XXX maybe try to get something more informative from the
# processing node (e.g. in 0.5 it used to be 'chunks'->'chunks'
# to indicate what was trained and what was tested. Now it is
# more tricky, because `node` could be anything
result.set_attr(space, (i,))
# store
results.append(result)
if ca.is_enabled("stats") and node.ca.has_key("stats") \
and node.ca.is_enabled("stats"):
if not ca.is_set('stats'):
# create empty stats container of matching type
ca.stats = node.ca['stats'].value.__class__()
# harvest summary stats
ca['stats'].value.__iadd__(node.ca['stats'].value)
# charge condition attribute
self.ca.repetition_results = results
# stack all results into a single Dataset
if concat_as == 'samples':
results = vstack(results)
elif concat_as == 'features':
results = hstack(results)
else:
raise ValueError("Unkown concatenation mode '%s'" % concat_as)
# no need to store the raw results, since the Measure class will
# automatically store them in a CA
return results
def _repetition_postcall(self, ds, node, result):
"""Post-processing handler for each repetition.
Maybe overwritten in subclasses to harvest additional data.
Parameters
----------
ds : Dataset
Input dataset for the node for this repetition
node : Node
Node after having processed the input dataset
result : Dataset
Output dataset of the node for this repetition.
Returns
-------
dataset
The result dataset.
"""
return result
def _untrain(self):
"""Untrain this measure and the embedded node."""
self._node.untrain()
super(RepeatedMeasure, self)._untrain()
node = property(fget=lambda self: self._node)
generator = property(fget=lambda self: self._generator)
callback = property(fget=lambda self: self._callback)
concat_as = property(fget=lambda self: self._concat_as)
class CrossValidation(RepeatedMeasure):
"""Cross-validate a learner's transfer on datasets.
A generator is used to resample a dataset into multiple instances (e.g.
sets of dataset partitions for leave-one-out folding). For each dataset
instance a transfer measure is computed by splitting the dataset into
two parts (defined by the dataset generators output space) and train a
custom learner on the first part and run it on the next. An arbitray error
function can by used to determine the learner's error when prediction the
dataset part that has been unseen during training.
"""
training_stats = ConditionalAttribute(enabled=False, doc=
"""Summary statistics about the training status of the learner
across all cross-validation fold.""")
# TODO move conditional attributes from CVTE into this guy
def __init__(self, learner, generator, errorfx=mean_mismatch_error,
splitter=None, **kwargs):
"""
Parameters
----------
learner : Learner
Any trainable node that shall be run on the dataset folds.
generator : Node
Generator used to resample the input dataset into multiple instances
(i.e. partitioning it). The number of datasets yielded by this
generator determines the number of cross-validation folds.
IMPORTANT: The ``space`` of this generator determines the attribute
that will be used to split all generated datasets into training and
testing sets.
errorfx : Node or callable
Custom implementation of an error function. The callable needs to
accept two arguments (1. predicted values, 2. target values). If not
a Node, it gets wrapped into a `BinaryFxNode`.
splitter : Splitter or None
A Splitter instance to split the dataset into training and testing
part. The first split will be used for training and the second for
testing -- all other splits will be ignored. If None, a default
splitter is auto-generated using the ``space`` setting of the
``generator``. The default splitter is configured to return the
``1``-labeled partition of the input dataset at first, and the
``2``-labeled partition second. This behavior corresponds to most
Partitioners that label the taken-out portion ``2`` and the remainder
with ``1``.
"""
# compile the appropriate repeated measure to do cross-validation from
# pieces
if not errorfx is None:
# error node -- postproc of transfer measure
if isinstance(errorfx, Node):
enode = errorfx
else:
# wrap into BinaryFxNode
enode = BinaryFxNode(errorfx, learner.get_space())
else:
enode = None
if splitter is None:
# default splitter splits into "1" and "2" partition.
# that will effectively ignore 'deselected' samples (e.g. by
# Balancer). It is done this way (and not by ignoring '0' samples
# because it is guaranteed to yield two splits) and is more likely
# to fail in visible ways if the attribute does not have 0,1,2
# values at all (i.e. a literal train/test/spareforlater attribute)
splitter = Splitter(generator.get_space(), attr_values=(1,2))
# transfer measure to wrap the learner
# splitter used the output space of the generator to know what to split
tm = TransferMeasure(learner, splitter, postproc=enode)
space = kwargs.pop('space', 'sa.cvfolds')
# and finally the repeated measure to perform the x-val
RepeatedMeasure.__init__(self, tm, generator, space=space,
**kwargs)
for ca in ['stats', 'training_stats']:
if self.ca.is_enabled(ca):
# enforce ca if requested
tm.ca.enable(ca)
if self.ca.is_enabled('training_stats'):
# also enable training stats in the learner
learner.ca.enable('training_stats')
def __repr__(self, prefixes=[]):
return super(CrossValidation, self).__repr__(
prefixes=prefixes
+ _repr_attrs(self, ['learner', 'splitter'])
+ _repr_attrs(self, ['errorfx'], default=mean_mismatch_error)
+ _repr_attrs(self, ['space'], default='sa.cvfolds'),
# Since it is the constructor which generates and passes
# node=TransferMeasure, it must not be present in __repr__ of CV
# TODO: clear up hierarchy
exclude=('node',)
)
def _call(self, ds):
# always untrain to wipe out previous stats
self.untrain()
return super(CrossValidation, self)._call(ds)
def _repetition_postcall(self, ds, node, result):
# local binding
ca = self.ca
if ca.is_enabled("training_stats"):
if not ca.is_set('training_stats'):
# create empty stats container of matching type
ca.training_stats = node.ca['training_stats'].value.__class__()
# harvest summary stats
ca['training_stats'].value.__iadd__(node.ca['training_stats'].value)
return result
transfermeasure = property(fget=lambda self:self._node)
# XXX Well, those properties are defined to match available
# attributes to constructor arguments. Unfortunately our
# hierarchy/API is not ideal at this point
learner = property(fget=lambda self: self.transfermeasure.measure)
splitter = property(fget=lambda self: self.transfermeasure.splitter)
errorfx = property(fget=lambda self: self.transfermeasure.postproc)
class TransferMeasure(Measure):
"""Train and run a measure on two different parts of a dataset.
Upon calling a TransferMeasure instance with a dataset the input dataset
is passed to a `Splitter` to will generate dataset subsets. The first
generated dataset is used to train an arbitray embedded `Measure. Once
trained, the measure is then called with the second generated dataset
and the result is returned.
"""
stats = ConditionalAttribute(enabled=False, doc=
"""Optional summary statistics about the transfer performance""")
training_stats = ConditionalAttribute(enabled=False, doc=
"""Summary statistics about the training status of the learner""")
is_trained = True
"""Indicate that this measure is always trained."""
def __init__(self, measure, splitter, **kwargs):
"""
Parameters
----------
measure: Measure
This measure instance is trained on the first dataset and called with
the second.
splitter: Splitter
This splitter instance has to generate at least two dataset splits
when called with the input dataset. The first split is used to train
the measure, the second split is used to run the trained measure.
"""
Measure.__init__(self, **kwargs)
self.__measure = measure
self.__splitter = splitter
def __repr__(self, prefixes=[]):
return super(TransferMeasure, self).__repr__(
prefixes=prefixes
+ _repr_attrs(self, ['measure', 'splitter'])
)
def _call(self, ds):
# local binding
measure = self.__measure
splitter = self.__splitter
ca = self.ca
space = self.get_space()
# generate the training and testing dataset subsequently to reduce the
# memory footprint, i.e. the splitter might generate copies of the data
# and no creates one at a time instead of two (for train and test) at
# once
# activate the dataset splitter
dsgen = splitter.generate(ds)
dstrain = dsgen.next()
if not len(dstrain):
raise ValueError(
"Got empty training dataset from splitting in TransferMeasure. "
"Unique values of input split attribute are: %s)" \
% (ds.sa[splitter.get_space()].unique))
if space:
# get unique chunks for training set
train_chunks = ','.join([str(i)
for i in dstrain.get_attr(splitter.get_space())[0].unique])
# ask splitter for first part
measure.train(dstrain)
# cleanup to free memory
del dstrain
# TODO get training confusion/stats
# run with second
dstest = dsgen.next()
if not len(dstest):
raise ValueError(
"Got empty testing dataset from splitting in TransferMeasure. "
"Unique values of input split attribute are: %s)" \
% (ds.sa[splitter.get_space()].unique))
if space:
# get unique chunks for testing set
test_chunks = ','.join([str(i)
for i in dstest.get_attr(splitter.get_space())[0].unique])
res = measure(dstest)
if space:
# will broadcast to desired length
res.set_attr(space, ("%s->%s" % (train_chunks, test_chunks),))
# cleanup to free memory
del dstest
# compute measure stats
if ca.is_enabled('stats'):
if not hasattr(measure, '__summary_class__'):
warning('%s has no __summary_class__ attribute -- '
'necessary for computing transfer stats' % measure)
else:
stats = measure.__summary_class__(
# hmm, might be unsupervised, i.e no targets...
targets=res.sa[measure.get_space()].value,
# XXX this should really accept the full dataset
predictions=res.samples[:, 0],
estimates = measure.ca.get('estimates', None))
ca.stats = stats
if ca.is_enabled('training_stats'):
if measure.ca.has_key("training_stats") \
and measure.ca.is_enabled("training_stats"):
ca.training_stats = measure.ca.training_stats
else:
warning("'training_stats' conditional attribute was enabled, "
"but the assigned measure '%s' either doesn't support "
"it, or it is disabled" % measure)
return res
measure = property(fget=lambda self:self.__measure)
splitter = property(fget=lambda self:self.__splitter)
class FeaturewiseMeasure(Measure):
"""A per-feature-measure computed from a `Dataset` (base class).
Should behave like a Measure.
"""
def _postcall(self, dataset, result):
"""Adjusts per-feature-measure for computed `result`
"""
# This method get the 'result' either as a 1D array, or as a Dataset
# everything else is illegal
if __debug__ \
and not isinstance(result, AttrDataset) \
and not len(result.shape) == 1:
raise RuntimeError("FeaturewiseMeasures have to return "
"their results as 1D array, or as a Dataset "
"(error made by: '%s')." % repr(self))
return Measure._postcall(self, dataset, result)
class StaticMeasure(Measure):
"""A static (assigned) sensitivity measure.
Since implementation is generic it might be per feature or
per whole dataset
"""
def __init__(self, measure=None, bias=None, *args, **kwargs):
"""Initialize.
Parameters
----------
measure
actual sensitivity to be returned
bias
optionally available bias
"""
Measure.__init__(self, *args, **kwargs)
if measure is None:
raise ValueError, "Sensitivity measure has to be provided"
self.__measure = measure
self.__bias = bias
def __repr__(self, prefixes=[]):
return super(StaticMeasure, self).__repr__(
prefixes=prefixes
+ _repr_attrs(self, ['measure', 'bias'])
)
def _call(self, dataset):
"""Returns assigned sensitivity
"""
return self.__measure
#XXX Might need to move into ConditionalAttribute?
measure = property(fget=lambda self:self.__measure)
bias = property(fget=lambda self:self.__bias)
def _dont_force_slaves(slave_kwargs={}):
"""Helper to reset force_train in sensitivities with slaves
"""
# We should not (or even must not in case of SplitCLF) force
# training of slave analyzers since they would be trained
# anyways by the Boosted analyzer's train
# TODO: consider at least a warning whenever it is provided
# and is True
slave_kwargs = slave_kwargs or {} # make new instance of default empty one
slave_kwargs['force_train'] = slave_kwargs.get('force_train', False)
return slave_kwargs
#
# Flavored implementations of FeaturewiseMeasures
class Sensitivity(FeaturewiseMeasure):
"""Sensitivities of features for a given Classifier.
"""
_LEGAL_CLFS = []
"""If Sensitivity is classifier specific, classes of classifiers
should be listed in the list
"""
def __init__(self, clf, force_train=True, **kwargs):
"""Initialize the analyzer with the classifier it shall use.
Parameters
----------
clf : `Classifier`
classifier to use.
force_train : bool
Flag whether the learner will enforce training on the input dataset
upon every call.
"""
"""Does nothing special."""
# by default auto train
kwargs['auto_train'] = kwargs.get('auto_train', True)
FeaturewiseMeasure.__init__(self, force_train=force_train, **kwargs)
_LEGAL_CLFS = self._LEGAL_CLFS
if len(_LEGAL_CLFS) > 0:
found = False
for clf_class in _LEGAL_CLFS:
if isinstance(clf, clf_class):
found = True
break
if not found:
raise ValueError, \
"Classifier %s has to be of allowed class (%s), but is %r" \
% (clf, _LEGAL_CLFS, type(clf))
self.__clf = clf
"""Classifier used to computed sensitivity"""
def __repr__(self, prefixes=[]):
return super(Sensitivity, self).__repr__(
prefixes=prefixes
+ _repr_attrs(self, ['clf'])
+ _repr_attrs(self, ['force_train'], default=True)
)
@property
def is_trained(self):
return self.__clf.trained
# """Train classifier on `dataset` and then compute actual sensitivity.
# If the classifier is already trained it is possible to extract the
# sensitivities without passing a dataset.
# """
# # local bindings
# clf = self.__clf
# if clf.trained:
# self._set_trained()
# elif self._force_training:
# if dataset is None:
# raise ValueError, \
# "Training classifier to compute sensitivities requires " \
# "a dataset."
# self.train(dataset)
# return FeaturewiseMeasure.__call__(self, dataset)
def _set_classifier(self, clf):
self.__clf = clf
def _train(self, dataset):
clf = self.__clf
if __debug__:
debug("SA", "Training classifier %s on %s %s",
(clf,
dataset,
{False: "since it wasn't yet trained",
True: "although it was trained previously"}
[clf.trained]))
return clf.train(dataset)
def _untrain(self):
"""Untrain corresponding classifier for Sensitivity
"""
if self.__clf is not None:
self.__clf.untrain()
super(Sensitivity, self)._untrain()
@property
def feature_ids(self):
"""Return feature_ids used by the underlying classifier
"""
return self.__clf._get_feature_ids()
clf = property(fget=lambda self:self.__clf,
fset=_set_classifier)
class CombinedFeaturewiseMeasure(FeaturewiseMeasure):
"""Set sensitivity analyzers to be merged into a single output"""
sensitivities = ConditionalAttribute(enabled=False,
doc="Sensitivities produced by each analyzer")
# XXX think again about combiners... now we have it in here and as
# well as in the parent -- FeaturewiseMeasure
# YYY because we don't use parent's _call. Needs RF
def __init__(self, analyzers=None, # XXX should become actually 'measures'
sa_attr='combinations',
**kwargs):
"""Initialize CombinedFeaturewiseMeasure
Parameters
----------
analyzers : list or None
List of analyzers to be used. There is no logic to populate
such a list in __call__, so it must be either provided to
the constructor or assigned to .analyzers prior calling
sa_attr : str
Name of the sa to be populated with the indexes of combinations
"""
if analyzers is None:
analyzers = []
self._sa_attr = sa_attr
FeaturewiseMeasure.__init__(self, **kwargs)
self.__analyzers = analyzers
"""List of analyzers to use"""
def __repr__(self, prefixes=[]):
return super(CombinedFeaturewiseMeasure, self).__repr__(
prefixes=prefixes
+ _repr_attrs(self, ['analyzers'])
+ _repr_attrs(self, ['sa_attr'], default='combinations')
)
def _call(self, dataset):
sensitivities = []
for ind, analyzer in enumerate(self.__analyzers):
if __debug__:
debug("SA", "Computing sensitivity for SA#%d:%s" %
(ind, analyzer))
sensitivity = analyzer(dataset)
sensitivities.append(sensitivity)
if __debug__:
debug("SA",
"Returning %d sensitivities from %s" %
(len(sensitivities), self.__class__.__name__))
sa_attr = self._sa_attr
if isinstance(sensitivities[0], AttrDataset):
smerged = None
for i, s in enumerate(sensitivities):
s.sa[sa_attr] = np.repeat(i, len(s))
if smerged is None:
smerged = s
else:
smerged.append(s)
sensitivities = smerged
else:
sensitivities = \
Dataset(sensitivities,
sa={sa_attr: np.arange(len(sensitivities))})
self.ca.sensitivities = sensitivities
return sensitivities
def _untrain(self):
"""Untrain CombinedFDM
"""
if self.__analyzers is not None:
for anal in self.__analyzers:
anal.untrain()
super(CombinedFeaturewiseMeasure, self)._untrain()
##REF: Name was automagically refactored
def _set_analyzers(self, analyzers):
"""Set the analyzers
"""
self.__analyzers = analyzers
"""Analyzers to use"""
analyzers = property(fget=lambda x:x.__analyzers,
fset=_set_analyzers,
doc="Used analyzers")
class BoostedClassifierSensitivityAnalyzer(Sensitivity):
"""Set sensitivity analyzers to be merged into a single output"""
# XXX we might like to pass parameters also for combined_analyzer
@group_kwargs(prefixes=['slave_'], assign=True)
def __init__(self,
clf,
analyzer=None,
combined_analyzer=None,
sa_attr='lrn_index',
**kwargs):
"""Initialize Sensitivity Analyzer for `BoostedClassifier`
Parameters
----------
clf : `BoostedClassifier`
Classifier to be used
analyzer : analyzer
Is used to populate combined_analyzer
sa_attr : str
Name of the sa to be populated with the indexes of learners
(passed to CombinedFeaturewiseMeasure is None is
given in `combined_analyzer`)
slave_*
Arguments to pass to created analyzer if analyzer is None
"""
Sensitivity.__init__(self, clf, **kwargs)
if analyzer is not None and len(self._slave_kwargs):
raise ValueError, \
"Provide either analyzer of slave_* arguments, not both"
# Do not force_train slave sensitivity since the dataset might
# be inappropriate -- rely on the classifier being trained by
# the extraction by the meta classifier itself
self._slave_kwargs = _dont_force_slaves(self._slave_kwargs)
if combined_analyzer is None:
# sanitarize kwargs
kwargs.pop('force_train', None)
combined_analyzer = CombinedFeaturewiseMeasure(sa_attr=sa_attr,
**kwargs)
self.__combined_analyzer = combined_analyzer
"""Combined analyzer to use"""
self.__analyzer = analyzer
"""Analyzer to use for basic classifiers within boosted classifier"""
## def __repr__(self, prefixes=[]):
## return super(BoostedClassifierSensitivityAnalyzer, self).__repr__(
## prefixes=prefixes
## + _repr_attrs(self, ['clf', 'analyzer', 'combined_analyzer'])
## + _repr_attrs(self, ['sa_attr'], default='combinations')
## )
def _untrain(self):
"""Untrain BoostedClassifierSensitivityAnalyzer
"""
if self.__analyzer is not None:
self.__analyzer.untrain()
self.__combined_analyzer.untrain()
super(BoostedClassifierSensitivityAnalyzer, self)._untrain()
def _call(self, dataset):
analyzers = []
# create analyzers
for clf in self.clf.clfs:
if self.__analyzer is None:
analyzer = clf.get_sensitivity_analyzer(**(self._slave_kwargs))
if analyzer is None:
raise ValueError, \
"Wasn't able to figure basic analyzer for clf %r" % \
(clf,)
if __debug__:
debug("SA", "Selected analyzer %r for clf %r" % \
(analyzer, clf))
else:
# XXX shallow copy should be enough...
analyzer = copy.copy(self.__analyzer)
# assign corresponding classifier
analyzer.clf = clf
# if clf was trained already - don't train again
if clf.trained:
analyzer._force_train = False
analyzers.append(analyzer)
self.__combined_analyzer.analyzers = analyzers
# XXX not sure if we don't want to call directly ._call(dataset) to avoid
# double application of transformers/combiners, after all we are just
# 'proxying' here to combined_analyzer...
# YOH: decided -- lets call ._call
return self.__combined_analyzer._call(dataset)
combined_analyzer = property(fget=lambda x:x.__combined_analyzer)
class ProxyClassifierSensitivityAnalyzer(Sensitivity):
"""Set sensitivity analyzer output just to pass through"""
clf_sensitivities = ConditionalAttribute(enabled=False,
doc="Stores sensitivities of the proxied classifier")
@group_kwargs(prefixes=['slave_'], assign=True)
def __init__(self,
clf,
analyzer=None,
**kwargs):
"""Initialize Sensitivity Analyzer for `BoostedClassifier`
"""
Sensitivity.__init__(self, clf, **kwargs)
# _slave_kwargs is assigned due to assign=True in @group_kwargs
if analyzer is not None and len(self._slave_kwargs):
raise ValueError, \
"Provide either analyzer of slave_* arguments, not both"
# Do not force_train slave sensitivity since the dataset might
# be inappropriate -- rely on the classifier being trained by
# the extraction by the meta classifier itself
self._slave_kwargs = _dont_force_slaves(self._slave_kwargs)
self.__analyzer = analyzer
"""Analyzer to use for basic classifiers within boosted classifier"""
def _untrain(self):
super(ProxyClassifierSensitivityAnalyzer, self)._untrain()
if self.__analyzer is not None:
self.__analyzer.untrain()
def _call(self, dataset):
# OPT: local bindings
clfclf = self.clf.clf
analyzer = self.__analyzer
if analyzer is None:
analyzer = clfclf.get_sensitivity_analyzer(
**(self._slave_kwargs))
if analyzer is None:
raise ValueError, \
"Wasn't able to figure basic analyzer for clf %s" % \
`clfclf`
if __debug__:
debug("SA", "Selected analyzer %s for clf %s" % \
(analyzer, clfclf))
# bind to the instance finally
self.__analyzer = analyzer
# TODO "remove" unnecessary things below on each call...
# assign corresponding classifier
analyzer.clf = clfclf
# if clf was trained already - don't train again
if clfclf.trained:
analyzer._force_train = False
result = analyzer._call(dataset)
self.ca.clf_sensitivities = result
return result
analyzer = property(fget=lambda x:x.__analyzer)
class BinaryClassifierSensitivityAnalyzer(ProxyClassifierSensitivityAnalyzer):
"""Set sensitivity analyzer output to have proper labels"""
def _call(self, dataset):
sens = super(self.__class__, self)._call(dataset)
clf = self.clf
targets_attr = clf.get_space()
if targets_attr in sens.sa:
# if labels are present -- transform them into meaningful tuples
# (or not if just a single beast)
am = AttributeMap(dict([(l, -1) for l in clf.neglabels] +
[(l, +1) for l in clf.poslabels]))
# XXX here we still can get a sensitivity per each label
# (e.g. with SMLR as the slave clf), so I guess we should
# tune up Multiclass...Analyzer to add an additional sa
# And here we might need to check if asobjarray call is necessary
# and should be actually done
#asobjarray(
sens.sa[targets_attr] = \
am.to_literal(sens.sa[targets_attr].value, recurse=True)
return sens
class RegressionAsClassifierSensitivityAnalyzer(ProxyClassifierSensitivityAnalyzer):
"""Set sensitivity analyzer output to have proper labels"""
def _call(self, dataset):
sens = super(RegressionAsClassifierSensitivityAnalyzer,
self)._call(dataset)
# We can have only a single sensitivity out of regression
assert(sens.shape[0] == 1)
clf = self.clf
targets_attr = clf.get_space()
if targets_attr not in sens.sa:
# We just assign a tuple of all labels sorted
labels = tuple(sorted(clf._trained_attrmap.values()))
if len(clf._trained_attrmap):
labels = clf._trained_attrmap.to_literal(labels, recurse=True)
sens.sa[targets_attr] = asobjarray([labels])
return sens
class FeatureSelectionClassifierSensitivityAnalyzer(ProxyClassifierSensitivityAnalyzer):
pass
class MappedClassifierSensitivityAnalyzer(ProxyClassifierSensitivityAnalyzer):
"""Set sensitivity analyzer output be reverse mapped using mapper of the
slave classifier"""
def _call(self, dataset):
# incoming dataset need to be forward mapped
dataset_mapped = self.clf.mapper(dataset)
if __debug__:
debug('SA', 'Mapped incoming dataset %s to %s'
% (dataset_mapped, dataset))
sens = super(MappedClassifierSensitivityAnalyzer,
self)._call(dataset_mapped)
return self.clf.mapper.reverse(sens)
def __str__(self):
return _str(self, str(self.clf))
|