/usr/share/pyshared/mvpa2/measures/anova.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""FeaturewiseMeasure performing a univariate ANOVA."""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.base import externals
from mvpa2.measures.base import FeaturewiseMeasure
from mvpa2.base.dataset import vstack
from mvpa2.datasets.base import Dataset
# TODO: Extend with access to functionality from scipy.stats?
# For binary:
# 2-sample kolmogorov-smirnof might be interesting
# (scipy.stats.ks_2samp) to judge if two conditions are derived
# from different distributions (take it as 'activity' vs 'rest'),
#
# For binary+multiclass:
# kruskal-wallis H-test (scipy.stats.kruskal)
#
# and may be some others
class OneWayAnova(FeaturewiseMeasure):
"""`FeaturewiseMeasure` that performs a univariate ANOVA.
F-scores are computed for each feature as the standard fraction of between
and within group variances. Groups are defined by samples with unique
labels.
No statistical testing is performed, but raw F-scores are returned as a
sensitivity map. As usual F-scores have a range of [0,inf] with greater
values indicating higher sensitivity.
The sensitivity map is returned as a single-sample dataset. If SciPy is
available the associated p-values will also be computed and are available
from the 'fprob' feature attribute.
"""
def __init__(self, space='targets', **kwargs):
"""
Parameters
----------
space : str
What samples attribute to use as targets (labels).
"""
# set auto-train flag since we have nothing special to be done
# so by default auto train
kwargs['auto_train'] = kwargs.get('auto_train', True)
FeaturewiseMeasure.__init__(self, space=space, **kwargs)
def __repr__(self, prefixes=None):
if prefixes is None:
prefixes = []
if self.get_space() != 'targets':
prefixes = prefixes + ['targets_attr=%r' % (self.get_space())]
return \
super(FeaturewiseMeasure, self).__repr__(prefixes=prefixes)
def _call(self, dataset):
# This code is based on SciPy's stats.f_oneway()
# Copyright (c) Gary Strangman. All rights reserved
# License: BSD
#
# However, it got tweaked and optimized to better fit into PyMVPA.
# number of groups
targets_sa = dataset.sa[self.get_space()]
labels = targets_sa.value
ul = targets_sa.unique
na = len(ul)
bign = float(dataset.nsamples)
alldata = dataset.samples
# total squares of sums
sostot = np.sum(alldata, axis=0)
sostot *= sostot
sostot /= bign
# total sum of squares
sstot = np.sum(alldata * alldata, axis=0) - sostot
# between group sum of squares
ssbn = 0
for l in ul:
# all samples for the respective label
d = alldata[labels == l]
sos = np.sum(d, axis=0)
sos *= sos
ssbn += sos / float(len(d))
ssbn -= sostot
# within
sswn = sstot - ssbn
# degrees of freedom
dfbn = na-1
dfwn = bign - na
# mean sums of squares
msb = ssbn / float(dfbn)
msw = sswn / float(dfwn)
f = msb / msw
# assure no NaNs -- otherwise it leads instead of
# sane unittest failure (check of NaNs) to crazy
# File "mtrand.pyx", line 1661, in mtrand.shuffle
# TypeError: object of type 'numpy.int64' has no len()
# without any sane backtrace
f[np.isnan(f)] = 0
if externals.exists('scipy'):
from scipy.stats import fprob
return Dataset(f[np.newaxis], fa={'fprob': fprob(dfbn, dfwn, f)})
else:
return Dataset(f[np.newaxis])
class CompoundOneWayAnova(OneWayAnova):
"""Compound comparisons via univariate ANOVA.
This measure compute an ANOVA F-score per each feature, for each
one-vs-rest comparision for all unique labels in a dataset. Each F-score
vector for each comparision is included in the return datasets as a separate
samples. Corresponding p-values are avialable in feature attributes named
'fprob_X', where `X` is the name of the actual comparision label. Note that
p-values are only available, if SciPy is installed. The comparison labels
for each F-vectore are also stored as 'targets' sample attribute in the
returned dataset.
"""
def _call(self, dataset):
"""Computes featurewise f-scores using compound comparisons."""
targets_sa = dataset.sa[self.get_space()]
orig_labels = targets_sa.value
labels = orig_labels.copy()
# Lets create a very shallow copy of a dataset with just
# samples and targets_attr
dataset_mod = Dataset(dataset.samples,
sa={self.get_space() : labels})
results = []
for ul in targets_sa.unique:
labels[orig_labels == ul] = 1
labels[orig_labels != ul] = 2
f_ds = OneWayAnova._call(self, dataset_mod)
if 'fprob' in f_ds.fa:
# rename the fprob attribute to something label specific
# to survive final aggregation stage
f_ds.fa['fprob_' + str(ul)] = f_ds.fa.fprob
del f_ds.fa['fprob']
results.append(f_ds)
results = vstack(results)
results.sa[self.get_space()] = targets_sa.unique
return results
|