/usr/share/pyshared/mvpa2/measures/adhocsearchlightbase.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""An efficient implementation of searchlight for GNB.
"""
__docformat__ = 'restructuredtext'
import numpy as np
#from numpy import ones, zeros, sum, abs, isfinite, dot
#from mvpa2.base import warning, externals
from mvpa2.datasets.base import Dataset
from mvpa2.misc.errorfx import mean_mismatch_error
from mvpa2.measures.searchlight import BaseSearchlight
from mvpa2.base import externals, warning
from mvpa2.base.dochelpers import borrowkwargs, _repr_attrs
from mvpa2.generators.splitters import Splitter
#from mvpa2.base.param import Parameter
#from mvpa2.base.state import ConditionalAttribute
#from mvpa2.measures.base import Sensitivity
from mvpa2.misc.neighborhood import IndexQueryEngine, Sphere
if __debug__:
from mvpa2.base import debug
import time as time
if externals.exists('scipy'):
import scipy.sparse as sps
# API of scipy.sparse has changed in 0.7.0 -- lets account for this
_coo_shape_argument = {
True: 'shape',
False: 'dims'} [externals.versions['scipy'] >= '0.7.0']
__all__ = [ "SimpleStatSearchlight" ]
def lastdim_columnsums_fancy_indexing(a, inds, out):
for i, inds_ in enumerate(inds):
out[..., i] = a[..., inds_].sum(axis=-1)
#
# Machinery for sparse matrix way
#
# silly Yarik failed to do np.r_[*neighbors] directly, so here is a
# trick
def r_helper(*args):
return np.r_[args]
def _inds_list_to_coo(inds, shape=None):
inds_r = r_helper(*(inds))
inds_i = r_helper(*[[i]*len(ind)
for i,ind in enumerate(inds)])
data = np.ones(len(inds_r))
ij = np.array([inds_r, inds_i])
spmat = sps.coo_matrix((data, ij), dtype=int, **{_coo_shape_argument:shape})
return spmat
def _inds_array_to_coo(inds, shape=None):
n_sums, n_cols_per_sum = inds.shape
cps_inds = inds.ravel()
row_inds = np.repeat(np.arange(n_sums)[None, :],
n_cols_per_sum, axis=0).T.ravel()
ij = np.r_[cps_inds[None, :], row_inds[None, :]]
data = np.ones(ij.shape[1])
inds_s = sps.coo_matrix((data, ij), **{_coo_shape_argument:shape})
return inds_s
def inds_to_coo(inds, shape=None):
"""Dispatcher for conversion to coo
"""
if isinstance(inds, np.ndarray):
return _inds_array_to_coo(inds, shape)
elif isinstance(inds, list):
return _inds_list_to_coo(inds, shape)
else:
raise NotImplementedError, "add conversion here"
def lastdim_columnsums_spmatrix(a, inds, out):
# inds is a 2D array or list or already a sparse matrix, with each
# row specifying a set of columns (in fact last dimension indices)
# to sum. Thus there are the same number of sums as there are
# rows in `inds`.
n_cols = a.shape[-1]
in_shape = a.shape[:-1]
# first convert to sparse if necessary
if sps.isspmatrix(inds):
n_sums = inds.shape[1]
inds_s = inds
else: # assume regular iterable
n_sums = len(inds)
inds_s = inds_to_coo(inds, shape=(n_cols, n_sums))
ar = a.reshape((-1, a.shape[-1]))
sums = np.asarray((sps.csr_matrix(ar) * inds_s).todense())
out[:] = sums.reshape(in_shape+(n_sums,))
class _STATS:
"""Just a dummy container to group/access stats
"""
pass
class SimpleStatBaseSearchlight(BaseSearchlight):
"""Base class for clf searchlights based on basic univar. statistics
Used for GNB and M1NN Searchlights
TODO
----
some stats are not needed (eg per sample X^2's) for M1NN, so we
should make them optional depending on the derived class
Note
----
refactored from the original GNBSearchlight
"""
# TODO: implement parallelization (see #67) and then uncomment
__init__doc__exclude__ = ['nproc']
def __init__(self, generator, qe, errorfx=mean_mismatch_error,
indexsum=None,
reuse_neighbors=False,
**kwargs):
"""Initialize the base class for "naive" searchlight classifiers
Parameters
----------
generator : `Generator`
Some `Generator` to prepare partitions for cross-validation.
qe : `QueryEngine`
Query engine which would provide neighborhood information
errorfx : func, optional
Functor that computes a scalar error value from the vectors of
desired and predicted values (e.g. subclass of `ErrorFunction`).
indexsum : ('sparse', 'fancy'), optional
What use to compute sums over arbitrary columns. 'fancy'
corresponds to regular fancy indexing over columns, whenever
in 'sparse', product of sparse matrices is used (usually
faster, so is default if `scipy` is available).
reuse_neighbors : bool, optional
Compute neighbors information only once, thus allowing for
efficient reuse on subsequent calls where dataset's feature
attributes remain the same (e.g. during permutation testing)
"""
# init base class first
BaseSearchlight.__init__(self, qe, **kwargs)
self._errorfx = errorfx
self._generator = generator
# TODO: move into _call since resetting over default None
# obscures __repr__
if indexsum is None:
if externals.exists('scipy'):
indexsum = 'sparse'
else:
indexsum = 'fancy'
else:
if indexsum == 'sparse' and not externals.exists('scipy'):
warning("Scipy.sparse isn't available so taking 'fancy' as "
"'indexsum' method.")
indexsum = 'fancy'
self._indexsum = indexsum
if not self.nproc in (None, 1):
raise NotImplementedError, "For now only nproc=1 (or None for " \
"autodetection) is supported by GNBSearchlight"
self.__pb = None # statistics per each block/label
self.__reuse_neighbors = reuse_neighbors
# Storage to be used for neighborhood information
self.__roi_fids = None
def __repr__(self, prefixes=[]):
return super(SimpleStatBaseSearchlight, self).__repr__(
prefixes=prefixes
+ _repr_attrs(self, ['generator'])
+ _repr_attrs(self, ['errorfx'], default=mean_mismatch_error)
+ _repr_attrs(self, ['indexsum'])
+ _repr_attrs(self, ['reuse_neighbors'], default=False)
)
def _get_space(self):
raise NotImplementedError("Must be implemented in derived classes")
def _untrain(self):
super(SimpleStatBaseSearchlight, self)._untrain()
self.__pb = None
def _compute_pb_stats(self, labels_numeric,
X, shape):
#
# reusable containers which should stay of the same size
#
nblocks = shape[0]
pb = self.__pb = _STATS()
# sums and sums of squares per each block
pb.sums = np.zeros(shape)
# sums of squares
pb.sums2 = np.zeros(shape)
pb.nsamples = np.zeros((nblocks,))
pb.labels = [None] * nblocks
if np.issubdtype(X.dtype, np.int):
# might result in overflow e.g. while taking .square which
# would result in negative variances etc, thus to be on a
# safe side -- convert to float
X = X.astype(float)
X2 = np.square(X)
# silly way for now
for l, s, s2, ib in zip(labels_numeric, X, X2, self.__sample2block):
pb.sums[ib] += s
pb.sums2[ib] += s2
pb.nsamples[ib] += 1
if pb.labels[ib] is None:
pb.labels[ib] = l
else:
assert(pb.labels[ib] == l)
pb.labels = np.asanyarray(pb.labels)
# additional silly tests for paranoid
assert(pb.labels.dtype.kind == 'i')
def _compute_pl_stats(self, sis, pl):
"""
Uses blocked stats to get stats across given samples' indexes
(might be training or testing)
Parameters
----------
sis : array of int
Indexes of samples
*args:
In-place containers
"""
# local binding
pb = self.__pb
# convert to blocks training split
bis = np.unique(self.__sample2block[sis])
# Let's collect stats summaries
nsamples = 0
for il, l in enumerate(self._ulabels_numeric):
bis_il = bis[pb.labels[bis] == l]
pl.nsamples[il] = N_float = \
float(np.sum(pb.nsamples[bis_il]))
nsamples += N_float
if N_float == 0.0:
pl.variances[il] = pl.sums[il] \
= pl.means[il] = pl.sums2[il] = 0.
else:
pl.sums[il] = np.sum(pb.sums[bis_il], axis=0)
pl.means[il] = pl.sums[il] / N_float
pl.sums2[il] = np.sum(pb.sums2[bis_il], axis=0)
## Actually compute the non-0 pl.variances
non0labels = (pl.nsamples.squeeze() != 0)
if np.all(non0labels):
# For a possible tiny speed up avoiding copying and
# using (no) slicing
non0labels = slice(None)
return nsamples, non0labels
def _sl_call(self, dataset, roi_ids, nproc):
"""Call to SimpleStatBaseSearchlight
"""
# Local bindings
generator = self.generator
qe = self.queryengine
errorfx = self.errorfx
if __debug__:
time_start = time.time()
targets_sa_name = self._get_space()
targets_sa = dataset.sa[targets_sa_name]
if __debug__:
debug_slc_ = 'SLC_' in debug.active
# get the dataset information into easy vars
X = dataset.samples
if len(X.shape) != 2:
raise ValueError(
'Unlike a classifier, %s (for now) operates on already'
'flattened datasets' % (self.__class__.__name__))
labels = targets_sa.value
ulabels = targets_sa.unique
nlabels = len(ulabels)
label2index = dict((l, il) for il, l in enumerate(ulabels))
labels_numeric = np.array([label2index[l] for l in labels])
self._ulabels_numeric = [label2index[l] for l in ulabels]
# set the feature dimensions
nsamples = len(X)
nrois = len(roi_ids)
s_shape = X.shape[1:] # shape of a single sample
# The shape of results
r_shape = (nrois,) + X.shape[2:]
#
# Everything toward optimization ;)
#
# Silly Yarik thinks that it might be worth to pre-compute
# statistics per each feature within a block of the samples
# which always come together in splits -- most often it is a
# (chunk, label) combination, but since we simply use a
# generator -- who knows! Therefore lets figure out what are
# those blocks and operate on them instead of original samples.
#
# After additional thinking about this -- probably it would be
# just minor additional improvements (ie not worth it) but
# since it is coded already -- let it be so
# 1. Query generator for the splits we will have
if __debug__:
debug('SLC',
'Phase 1. Initializing partitions using %s on %s'
% (generator, dataset))
# Lets just create a dummy ds which will store for us actual sample
# indicies
# XXX we could make it even more lightweight I guess...
dataset_indicies = Dataset(np.arange(nsamples), sa=dataset.sa)
splitter = Splitter(attr=generator.get_space())
splits = list(tuple(splitter.generate(ds_))
for ds_ in generator.generate(dataset_indicies))
nsplits = len(splits)
# 2. Figure out the new 'chunks x labels' blocks of combinations
# of samples
if __debug__:
debug('SLC',
'Phase 2. Blocking data for %i splits and %i labels'
% (nsplits, nlabels))
# array of indicies for label, split1, split2, ...
# through which we will pass later on to figure out
# unique combinations
combinations = np.ones((nsamples, 1+nsplits), dtype=int)*-1
# labels
combinations[:, 0] = labels_numeric
for ipartition, (split1, split2) in enumerate(splits):
combinations[split1.samples[:, 0], 1+ipartition] = 1
combinations[split2.samples[:, 0], 1+ipartition] = 2
# Check for over-sampling, i.e. no same sample used twice here
if not (len(np.unique(split1.samples[:, 0])) == len(split1) and
len(np.unique(split2.samples[:, 0])) == len(split2)):
raise RuntimeError(
"%s needs a partitioner which does not reuse "
"the same the same samples more than once"
% self.__class__)
# sample descriptions -- should be unique for
# samples within the same block
descriptions = [tuple(c) for c in combinations]
udescriptions = sorted(list(set(descriptions)))
nblocks = len(udescriptions)
description2block = dict([(d, i) for i, d in enumerate(udescriptions)])
# Indices for samples to point to their block
self.__sample2block = sample2block = \
np.array([description2block[d] for d in descriptions])
# 3. Compute statistics per each block
#
if __debug__:
debug('SLC',
'Phase 3. Computing statistics for %i blocks' % (nblocks,))
self._compute_pb_stats(labels_numeric, X, (nblocks,) + s_shape)
# derived classes might decide differently on what they
# actually need, so defer reserving the space and computing
# stats to them
self._reserve_pl_stats_space((nlabels, ) + s_shape)
# results
results = np.zeros((nsplits,) + r_shape)
# 4. Lets deduce all neighbors... might need to be RF into the
# parallel part later on
# TODO: needs OPT since this is the step consuming 50% of time
# or more allow to cache them entirely so this would
# not be an unnecessary burden during permutation testing
if not self.reuse_neighbors or self.__roi_fids is None:
if __debug__:
debug('SLC',
'Phase 4. Deducing neighbors information for %i ROIs'
% (nrois,))
roi_fids = [qe.query_byid(f) for f in roi_ids]
else:
if __debug__:
debug('SLC',
'Phase 4. Reusing neighbors information for %i ROIs'
% (nrois,))
roi_fids = self.__roi_fids
self.ca.roi_feature_ids = roi_fids
roi_sizes = []
if isinstance(roi_fids, list):
nroi_fids = len(roi_fids)
if self.ca.is_enabled('roi_sizes'):
roi_sizes = [len(x) for x in roi_fids]
elif externals.exists('scipy') and isinstance(roi_fids, sps.spmatrix):
nroi_fids = roi_fids.shape[1]
if self.ca.is_enabled('roi_sizes'):
# very expensive operation, so better not to ask over again
# roi_sizes = [roi_fids.getrow(r).nnz for r in range(nroi_fids)]
warning("Since 'sparse' trick is used, extracting sizes of "
"roi's are expensive at this point. Get them from the "
".ca value of the original instance before "
"calling again and using reuse_neighbors")
else:
raise RuntimeError("Should not be reachable")
# Since this is ad-hoc implementation of the searchlight, we are not passing
# those via ds.a but rather assign directly to self.ca
self.ca.roi_sizes = roi_sizes
indexsum = self._indexsum
if indexsum == 'sparse':
if not self.reuse_neighbors or self.__roi_fids is None:
if __debug__:
debug('SLC',
'Phase 4b. Converting neighbors to sparse matrix '
'representation')
# convert to "sparse representation" where column j contains
# 1s only at the roi_fids[j] indices
roi_fids = inds_to_coo(roi_fids,
shape=(dataset.nfeatures, nroi_fids))
indexsum_fx = lastdim_columnsums_spmatrix
elif indexsum == 'fancy':
indexsum_fx = lastdim_columnsums_fancy_indexing
else:
raise ValueError, \
"Do not know how to deal with indexsum=%s" % indexsum
# Store roi_fids
if self.reuse_neighbors and self.__roi_fids is None:
self.__roi_fids = roi_fids
# 5. Lets do actual "splitting" and "classification"
if __debug__:
debug('SLC', 'Phase 5. Major loop' )
for isplit, split in enumerate(splits):
if __debug__:
debug('SLC', ' Split %i out of %i' % (isplit, nsplits))
# figure out for a given splits the blocks we want to work
# with
# sample_indicies
training_sis = split[0].samples[:, 0]
testing_sis = split[1].samples[:, 0]
# That is the GNB specificity
targets, predictions = self._sl_call_on_a_split(
split, X, # X2 might light to go
training_sis, testing_sis,
## training_nsamples, # GO? == np.sum(pl.nsamples)
## training_non0labels,
## pl.sums, pl.means, pl.sums2, pl.variances,
# passing nroi_fids as well since in 'sparse' way it has no 'length'
nroi_fids, roi_fids,
indexsum_fx,
labels_numeric,
)
# assess the errors
if __debug__:
debug('SLC', " Assessing accuracies")
if errorfx is mean_mismatch_error:
results[isplit, :] = \
(predictions != targets[:, None]).sum(axis=0) \
/ float(len(targets))
else:
# somewhat silly but a way which allows to use pre-crafted
# error functions without a chance to screw up
for i, fpredictions in enumerate(predictions.T):
results[isplit, i] = errorfx(fpredictions, targets)
if __debug__:
debug('SLC', "%s._call() is done in %.3g sec" %
(self.__class__.__name__, time.time() - time_start))
return Dataset(results)
generator = property(fget=lambda self: self._generator)
errorfx = property(fget=lambda self: self._errorfx)
indexsum = property(fget=lambda self: self._indexsum)
reuse_neighbors = property(fget=lambda self: self.__reuse_neighbors)
|