/usr/share/pyshared/mvpa2/mappers/wavelet.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Wavelet mappers"""
from mvpa2.base import externals
if externals.exists('pywt', raise_=True):
# import conditional to be able to import the whole module while building
# the docs even if pywt is not installed
import pywt
import numpy as np
from mvpa2.base import warning
from mvpa2.mappers.base import Mapper
if __debug__:
from mvpa2.base import debug
# WaveletPacket and WaveletTransformation mappers share lots of common
# functionality at the moment
class _WaveletMapper(Mapper):
"""Generic class for Wavelet mappers (decomposition and packet)
"""
def __init__(self, dim=1, wavelet='sym4', mode='per', maxlevel=None):
"""Initialize _WaveletMapper mapper
Parameters
----------
dim : int or tuple of int
dimensions to work across (for now just scalar value, ie 1D
transformation) is supported
wavelet : str
one from the families available withing pywt package
mode : str
periodization mode
maxlevel : int or None
number of levels to use. If None - automatically selected by pywt
"""
Mapper.__init__(self)
self._dim = dim
"""Dimension to work along"""
self._maxlevel = maxlevel
"""Maximal level of decomposition. None for automatic"""
if not wavelet in pywt.wavelist():
raise ValueError, \
"Unknown family of wavelets '%s'. Please use one " \
"available from the list %s" % (wavelet, pywt.wavelist())
self._wavelet = wavelet
"""Wavelet family to use"""
if not mode in pywt.MODES.modes:
raise ValueError, \
"Unknown periodization mode '%s'. Please use one " \
"available from the list %s" % (mode, pywt.MODES.modes)
self._mode = mode
"""Periodization mode"""
def _forward_data(self, data):
data = np.asanyarray(data)
self._inshape = data.shape
self._intimepoints = data.shape[self._dim]
res = self._wm_forward(data)
self._outshape = res.shape
return res
def _reverse_data(self, data):
data = np.asanyarray(data)
return self._wm_reverse(data)
def _wm_forward(self, *args):
raise NotImplementedError
def _wm_reverse(self, *args):
raise NotImplementedError
##REF: Name was automagically refactored
def _get_indexes(shape, dim):
"""Generator for coordinate tuples providing slice for all in `dim`
XXX Somewhat sloppy implementation... but works...
"""
if len(shape) < dim:
raise ValueError, "Dimension %d is incorrect for a shape %s" % \
(dim, shape)
n = len(shape)
curindexes = [0] * n
curindexes[dim] = Ellipsis#slice(None) # all elements for dimension dim
while True:
yield tuple(curindexes)
for i in xrange(n):
if i == dim and dim == n-1:
return # we reached it -- thus time to go
if curindexes[i] == shape[i] - 1:
if i == n-1:
return
curindexes[i] = 0
else:
if i != dim:
curindexes[i] += 1
break
class WaveletPacketMapper(_WaveletMapper):
"""Convert signal into an overcomplete representaion using Wavelet packet
"""
def __init__(self, level=None, **kwargs):
"""Initialize WaveletPacketMapper mapper
Parameters
----------
level : int or None
What level to decompose at. If 'None' data for all levels
is provided, but due to different sizes, they are placed
in 1D row.
"""
_WaveletMapper.__init__(self,**kwargs)
self.__level = level
# XXX too much of duplications between such methods -- it begs
# refactoring
##REF: Name was automagically refactored
def __forward_single_level(self, data):
if __debug__:
debug('MAP', "Converting signal using DWP (single level)")
wp = None
level = self.__level
wavelet = self._wavelet
mode = self._mode
dim = self._dim
level_paths = None
for indexes in _get_indexes(data.shape, self._dim):
if __debug__:
debug('MAP_', " %s" % (indexes,), lf=False, cr=True)
WP = pywt.WaveletPacket(
data[indexes], wavelet=wavelet,
mode=mode, maxlevel=level)
level_nodes = WP.get_level(level)
if level_paths is None:
# Needed for reconstruction
self.__level_paths = np.array([node.path for node in level_nodes])
level_datas = np.array([node.data for node in level_nodes])
if wp is None:
newdim = data.shape
newdim = newdim[:dim] + level_datas.shape + newdim[dim+1:]
if __debug__:
debug('MAP_', "Initializing storage of size %s for single "
"level (%d) mapping of data of size %s" % (newdim, level, data.shape))
wp = np.empty( tuple(newdim) )
wp[indexes] = level_datas
return wp
##REF: Name was automagically refactored
def __forward_multiple_levels(self, data):
wp = None
levels_length = None # total length at each level
levels_lengths = None # list of lengths per each level
for indexes in _get_indexes(data.shape, self._dim):
if __debug__:
debug('MAP_', " %s" % (indexes,), lf=False, cr=True)
WP = pywt.WaveletPacket(
data[indexes],
wavelet=self._wavelet,
mode=self._mode, maxlevel=self._maxlevel)
if levels_length is None:
levels_length = [None] * WP.maxlevel
levels_lengths = [None] * WP.maxlevel
levels_datas = []
for level in xrange(WP.maxlevel):
level_nodes = WP.get_level(level+1)
level_datas = [node.data for node in level_nodes]
level_lengths = [len(x) for x in level_datas]
level_length = np.sum(level_lengths)
if levels_lengths[level] is None:
levels_lengths[level] = level_lengths
elif levels_lengths[level] != level_lengths:
raise RuntimeError, \
"ADs of same level of different samples should have same number of elements." \
" Got %s, was %s" % (level_lengths, levels_lengths[level])
if levels_length[level] is None:
levels_length[level] = level_length
elif levels_length[level] != level_length:
raise RuntimeError, \
"Levels of different samples should have same number of elements." \
" Got %d, was %d" % (level_length, levels_length[level])
level_data = np.hstack(level_datas)
levels_datas.append(level_data)
# assert(len(data) == levels_length)
# assert(len(data) >= Ntimepoints)
if wp is None:
newdim = list(data.shape)
newdim[self._dim] = np.sum(levels_length)
wp = np.empty( tuple(newdim) )
wp[indexes] = np.hstack(levels_datas)
self.levels_lengths, self.levels_length = levels_lengths, levels_length
if __debug__:
debug('MAP_', "")
debug('MAP', "Done convertion into wp. Total size %s" % str(wp.shape))
return wp
def _wm_forward(self, data):
if __debug__:
debug('MAP', "Converting signal using DWP")
if self.__level is None:
return self.__forward_multiple_levels(data)
else:
return self.__forward_single_level(data)
#
# Reverse mapping
#
##REF: Name was automagically refactored
def __reverse_single_level(self, wp):
# local bindings
level_paths = self.__level_paths
# define wavelet packet to use
WP = pywt.WaveletPacket(
data=None, wavelet=self._wavelet,
mode=self._mode, maxlevel=self.__level)
# prepare storage
signal_shape = wp.shape[:1] + self._inshape[1:]
signal = np.zeros(signal_shape)
Ntime_points = self._intimepoints
for indexes in _get_indexes(signal_shape,
self._dim):
if __debug__:
debug('MAP_', " %s" % (indexes,), lf=False, cr=True)
for path, level_data in zip(level_paths, wp[indexes]):
WP[path] = level_data
signal[indexes] = WP.reconstruct(True)[:Ntime_points]
return signal
def _wm_reverse(self, data):
if __debug__:
debug('MAP', "Converting signal back using DWP")
if self.__level is None:
raise NotImplementedError
else:
if not externals.exists('pywt wp reconstruct'):
raise NotImplementedError, \
"Reconstruction for a single level for versions of " \
"pywt < 0.1.7 (revision 103) is not supported"
if not externals.exists('pywt wp reconstruct fixed'):
warning("%s: Reverse mapping with this version of 'pywt' might "
"result in incorrect data in the tails of the signal. "
"Please check for an update of 'pywt', or be careful "
"when interpreting the edges of the reverse mapped "
"data." % self.__class__.__name__)
return self.__reverse_single_level(data)
class WaveletTransformationMapper(_WaveletMapper):
"""Convert signal into wavelet representaion
"""
def _wm_forward(self, data):
"""Decompose signal into wavelets's coefficients via dwt
"""
if __debug__:
debug('MAP', "Converting signal using DWT")
wd = None
coeff_lengths = None
for indexes in _get_indexes(data.shape, self._dim):
if __debug__:
debug('MAP_', " %s" % (indexes,), lf=False, cr=True)
coeffs = pywt.wavedec(
data[indexes],
wavelet=self._wavelet,
mode=self._mode,
level=self._maxlevel)
# Silly Yarik embedds extraction of statistics right in place
#stats = []
#for coeff in coeffs:
# stats_ = [np.std(coeff),
# np.sqrt(np.dot(coeff, coeff)),
# ]# + list(np.histogram(coeff, normed=True)[0]))
# stats__ = list(coeff) + stats_[:]
# stats__ += list(np.log(stats_))
# stats__ += list(np.sqrt(stats_))
# stats__ += list(np.array(stats_)**2)
# stats__ += [ np.median(coeff), np.mean(coeff), scipy.stats.kurtosis(coeff) ]
# stats.append(stats__)
#coeffs = stats
coeff_lengths_ = np.array([len(x) for x in coeffs])
if coeff_lengths is None:
coeff_lengths = coeff_lengths_
assert((coeff_lengths == coeff_lengths_).all())
if wd is None:
newdim = list(data.shape)
newdim[self._dim] = np.sum(coeff_lengths)
wd = np.empty( tuple(newdim) )
coeff = np.hstack(coeffs)
wd[indexes] = coeff
if __debug__:
debug('MAP_', "")
debug('MAP', "Done DWT. Total size %s" % str(wd.shape))
self.lengths = coeff_lengths
return wd
def _wm_reverse(self, wd):
if __debug__:
debug('MAP', "Performing iDWT")
signal = None
wd_offsets = [0] + list(np.cumsum(self.lengths))
nlevels = len(self.lengths)
Ntime_points = self._intimepoints #len(time_points)
# unfortunately sometimes due to padding iDWT would return longer
# sequences, thus we just limit to the right ones
for indexes in _get_indexes(wd.shape, self._dim):
if __debug__:
debug('MAP_', " %s" % (indexes,), lf=False, cr=True)
wd_sample = wd[indexes]
wd_coeffs = [wd_sample[wd_offsets[i]:wd_offsets[i+1]] for i in xrange(nlevels)]
# need to compose original list
time_points = pywt.waverec(
wd_coeffs, wavelet=self._wavelet, mode=self._mode)
if signal is None:
newdim = list(wd.shape)
newdim[self._dim] = Ntime_points
signal = np.empty(newdim)
signal[indexes] = time_points[:Ntime_points]
if __debug__:
debug('MAP_', "")
debug('MAP', "Done iDWT. Total size %s" % (signal.shape, ))
return signal
|