This file is indexed.

/usr/share/pyshared/mvpa2/mappers/som.py is in python-mvpa2 2.2.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Self-organizing map (SOM) mapper."""

__docformat__ = 'restructuredtext'


import numpy as np
from mvpa2.mappers.base import Mapper, accepts_dataset_as_samples

if __debug__:
    from mvpa2.base import debug

class SimpleSOMMapper(Mapper):
    """Mapper using a self-organizing map (SOM) for dimensionality reduction.

    This mapper provides a simple, but pretty fast implementation of a
    self-organizing map using an unsupervised training algorithm. It performs a
    ND -> 2D mapping, which can for, example, be used for visualization of
    high-dimensional data.

    This SOM implementation uses squared Euclidean distance to determine
    the best matching Kohonen unit and a Gaussian neighborhood influence
    kernel.
    """
    def __init__(self, kshape, niter, learning_rate=0.005,
                 iradius=None):
        """
        Parameters
        ----------
        kshape : (int, int)
          Shape of the internal Kohonen layer. Currently, only 2D Kohonen
          layers are supported, although the length of an axis might be set
          to 1.
        niter : int
          Number of iteration during network training.
        learning_rate : float
          Initial learning rate, which will continuously decreased during
          network training.
        iradius : float or None
          Initial radius of the Gaussian neighborhood kernel radius, which
          will continuously decreased during network training. If `None`
          (default) the radius is set equal to the longest edge of the
          Kohonen layer.
        """
        # init base class
        Mapper.__init__(self)

        self.kshape = np.array(kshape, dtype='int')

        if iradius is None:
            self.radius = self.kshape.max()
        else:
            self.radius = iradius

        # learning rate
        self.lrate = learning_rate

        # number of training iterations
        self.niter = niter

        # precompute whatever can be done
        # scalar for decay of learning rate and radius across all iterations
        self.iter_scale = self.niter / np.log(self.radius)

        # the internal kohonen layer
        self._K = None


    @accepts_dataset_as_samples
    def _train(self, samples):
        """Perform network training.

        Parameter
        ---------
        samples : array-like
          Used for unsupervised training of the SOM.
        """
        # XXX initialize with clever default, e.g. plain of first two PCA
        # components
        self._K = np.random.standard_normal(tuple(self.kshape) + (samples.shape[1],))

        # units weight vector deltas for batch training
        # (height x width x #features)
        unit_deltas = np.zeros(self._K.shape, dtype='float')

        # precompute distance kernel between elements in the Kohonen layer
        # that will remain constant throughout the training
        # (just compute one quadrant, as the distances are symmetric)
        # XXX maybe do other than squared Euclidean?
        dqd = np.fromfunction(lambda x, y: (x**2 + y**2)**0.5,
                             self.kshape, dtype='float')

        # for all iterations
        for it in xrange(1, self.niter + 1):
            # compute the neighborhood impact kernel for this iteration
            # has to be recomputed since kernel shrinks over time
            k = self._compute_influence_kernel(it, dqd)

            # for all training vectors
            for s in samples:
                # determine closest unit (as element coordinate)
                b = self._get_bmu(s)
                # train all units at once by unfolding the kernel (from the
                # single quadrant that is precomputed), cutting it to the
                # right shape and simply multiply it to the difference of target
                # and all unit weights....
                infl = np.vstack((
                        np.hstack((
                            # upper left
                            k[b[0]:0:-1, b[1]:0:-1],
                            # upper right
                            k[b[0]:0:-1, :self.kshape[1] - b[1]])),
                        np.hstack((
                            # lower left
                            k[:self.kshape[0] - b[0], b[1]:0:-1],
                            # lower right
                            k[:self.kshape[0] - b[0], :self.kshape[1] - b[1]]))
                               ))
                unit_deltas += infl[:,:,np.newaxis] * (s - self._K)

            # apply cumulative unit deltas
            self._K += unit_deltas

            if __debug__:
                debug("SOM", "Iteration %d/%d done: ||unit_deltas||=%g" %
                      (it, self.niter, np.sqrt(np.sum(unit_deltas **2))))

            # reset unit deltas
            unit_deltas.fill(0.)


    ##REF: Name was automagically refactored
    def _compute_influence_kernel(self, iter, dqd):
        """Compute the neighborhood kernel for some iteration.

        Parameters
        ----------
        iter : int
          The iteration for which to compute the kernel.
        dqd : array (nrows x ncolumns)
          This is one quadrant of Euclidean distances between Kohonen unit
          locations.
        """
        # compute radius decay for this iteration
        curr_max_radius = self.radius * np.exp(-1.0 * iter / self.iter_scale)

        # same for learning rate
        curr_lrate = self.lrate * np.exp(-1.0 * iter / self.iter_scale)

        # compute Gaussian influence kernel
        infl = np.exp((-1.0 * dqd) / (2 * curr_max_radius * iter))
        infl *= curr_lrate

        # hard-limit kernel to max radius
        # XXX is this really necessary?
        infl[dqd > curr_max_radius] = 0.

        return infl


    ##REF: Name was automagically refactored
    def _get_bmu(self, sample):
        """Returns the ID of the best matching unit.

        'best' is determined as minimal squared Euclidean distance between
        any units weight vector and some given target `sample`

        Parameters
        ----------
        sample : array
          Target sample.

        Returns
        -------
        tuple: (row, column)
        """
        # TODO expose distance function as parameter
        loc = np.argmin(((self.K - sample) ** 2).sum(axis=2))
        # assumes 2D Kohonen layer
        return (np.divide(loc, self.kshape[1]).astype('int'), loc % self.kshape[1])


    def _forward_data(self, data):
        """Map data from the IN dataspace into OUT space.

        Mapping is performs by simple determining the best matching Kohonen
        unit for each data sample.
        """
        return np.array([self._get_bmu(d) for d in data])


    def _reverse_data(self, data):
        """Reverse map data from OUT space into the IN space.
        """
        # simple transform into appropriate array slicing and
        # return the associated Kohonen unit weights
        return self.K[tuple(np.transpose(data))]


    def __repr__(self):
        s = Mapper.__repr__(self).rstrip(' )')
        # beautify
        if not s[-1] == '(':
            s += ' '
        s += 'kshape=%s, niter=%i, learning_rate=%f, iradius=%f)' \
                % (str(tuple(self.kshape)), self.niter, self.lrate,
                   self.radius)
        return s


    ##REF: Name was automagically refactored
    def _access_kohonen(self):
        """Provide access to the Kohonen layer.

        With some care.
        """
        if self._K is None:
            raise RuntimeError, \
                  'The SOM needs to be trained before access to the Kohonen ' \
                  'layer is possible.'

        return self._K


    K = property(fget=_access_kohonen)