/usr/share/pyshared/mvpa2/mappers/slicing.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Mappers for Dataset slicing."""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.base.node import Node
from mvpa2.mappers.base import Mapper, accepts_dataset_as_samples
from mvpa2.base.dochelpers import _str, _repr_attrs
from mvpa2.generators.splitters import mask2slice
class SliceMapper(Mapper):
"""Baseclass of Mapper that slice a Dataset in various ways.
"""
def __init__(self, slicearg, **kwargs):
Mapper.__init__(self, **kwargs)
self._safe_assign_slicearg(slicearg)
def _safe_assign_slicearg(self, slicearg):
# convert int sliceargs into lists to prevent getting scalar values when
# slicing
if isinstance(slicearg, int):
slicearg = [slicearg]
self._slicearg = slicearg
# if we got some sort of slicearg we assume that we are ready to go
if not slicearg is None:
self._set_trained()
def __repr__(self, prefixes=[]):
return super(SliceMapper, self).__repr__(
prefixes=prefixes
+ _repr_attrs(self, ['slicearg']))
def __str__(self):
# with slicearg it can quickly get very unreadable
#return _str(self, str(self._slicearg))
return _str(self)
def _untrain(self):
self._safe_assign_slicearg(None)
super(SliceMapper, self)._untrain()
def __iadd__(self, other):
# our slicearg
this = self._slicearg
# if another slice mapper work on its slicearg
if isinstance(other, SliceMapper):
other = other._slicearg
# catch stupid arg
if not (isinstance(other, tuple) or isinstance(other, list) \
or isinstance(other, np.ndarray) or isinstance(other, slice)):
return NotImplemented
if isinstance(this, slice):
# we can always merge if the slicing arg can be sliced itself (i.e.
# it is not a slice-object... unless it doesn't really slice we do
# not want to expand slices into index lists to become mergable,
# since that would cause cheap view-based slicing to become
# expensive copy-based slicing
if this == slice(None):
# this one did nothing, just use the other and be done
self._safe_assign_slicearg(other)
return self
else:
# see comment above
return NotImplemented
# list or tuple are alike
if isinstance(this, list) or isinstance(this, tuple):
# simply convert it into an array and proceed from there
this = np.asanyarray(this)
if this.dtype.type is np.bool_:
# simply convert it into an index array --prevents us from copying a
# lot and allows for sliceargs such as [3,3,4,4,5,5]
this = this.nonzero()[0]
if this.dtype.char in np.typecodes['AllInteger']:
self._safe_assign_slicearg(this[other])
return self
# if we get here we got something the isn't supported
return NotImplemented
slicearg = property(fget=lambda self:self._slicearg)
class SampleSliceMapper(SliceMapper):
"""Mapper to select a subset of samples."""
def __init__(self, slicearg, **kwargs):
"""
Parameters
----------
slicearg : int, list(int), array(int), array(bool)
Any slicing argument that is compatible with numpy arrays. Depending
on the argument the mapper will perform basic slicing or
advanced indexing (with all consequences on speed and memory
consumption).
"""
SliceMapper.__init__(self, slicearg, **kwargs)
def _call(self, ds):
# it couldn't be simpler
return ds[self._slicearg]
class StripBoundariesSamples(Node):
"""Strip samples on boundaries defines by sample attribute values.
A sample attribute of a dataset is scanned for consecutive blocks of
identical values. Every change in the value is treated as a boundary
and custom number of samples is removed prior and after this boundary.
"""
def __init__(self, space, prestrip, poststrip, **kwargs):
"""
Parameters
----------
space : str
name of the sample attribute that shall be used to determine the
boundaries.
prestrip : int
Number of samples to be stripped prior to each boundary.
poststrip : int
Number of samples to be stripped after each boundary (this includes
the boundary sample itself, i.e. the first samples with a different
sample attribute value).
"""
Node.__init__(self, space=space, **kwargs)
self._prestrip = prestrip
self._poststrip = poststrip
def _call(self, ds):
# attribute to detect boundaries
battr = ds.sa[self.get_space()].value
# filter which samples to keep
filter_ = np.ones(battr.shape, dtype='bool')
# determine boundary indices -- shift by one to have the new value
# as the boundary
bindices = (battr[:-1] != battr[1:]).nonzero()[0] + 1
# for all boundaries
for b in bindices:
lower = b - self._prestrip
upper = b + self._poststrip
filter_[lower:upper] = False
filter_ = mask2slice(filter_)
return ds[filter_]
|