/usr/share/pyshared/mvpa2/mappers/projection.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.base.dochelpers import enhanced_doc_string
from mvpa2.mappers.base import Mapper, accepts_dataset_as_samples
if __debug__:
from mvpa2.base import debug
class ProjectionMapper(Mapper):
"""Linear mapping between multidimensional spaces.
This class cannot be used directly. Sub-classes have to implement
the `_train()` method, which has to compute the projection matrix
`_proj` and optionally offset vectors `_offset_in` and
`_offset_out` (if initialized with demean=True, which is default)
given a dataset (see `_train()` docstring for more information).
Once the projection matrix is available, this class provides
functionality to perform forward and backwards linear mapping of
data, the latter by default using pseudo-inverse (but could be
altered in subclasses, like hermitian (conjugate) transpose in
case of SVD). Additionally, `ProjectionMapper` supports optional
selection of arbitrary component (i.e. columns of the projection
matrix) of the projection.
Forward and back-projection matrices (a.k.a. *projection* and
*reconstruction*) are available via the `proj` and `recon`
properties.
"""
_DEV__doc__ = """Think about renaming `demean`, may be `translation`?"""
def __init__(self, demean=True, **kwargs):
"""Initialize the ProjectionMapper
Parameters
----------
demean : bool
Either data should be demeaned while computing
projections and applied back while doing reverse()
"""
Mapper.__init__(self, **kwargs)
# by default we want to wipe the feature attributes out during mapping
self._fa_filter = []
self._proj = None
"""Forward projection matrix."""
self._recon = None
"""Reverse projection (reconstruction) matrix."""
self._demean = demean
"""Flag whether to demean the to be projected data, prior to projection.
"""
self._offset_in = None
"""Offset (most often just mean) in the input space"""
self._offset_out = None
"""Offset (most often just mean) in the output space"""
__doc__ = enhanced_doc_string('ProjectionMapper', locals(), Mapper)
@accepts_dataset_as_samples
def _pretrain(self, samples):
"""Determine the projection matrix.
Parameters
----------
dataset : Dataset
Dataset to operate on
"""
if self._demean:
self._offset_in = samples.mean(axis=0)
##REF: Name was automagically refactored
def _demean_data(self, data):
"""Helper which optionally demeans
"""
if self._demean:
# demean the training data
data = data - self._offset_in
if __debug__ and "MAP_" in debug.active:
debug("MAP_",
"%s: Mean of data in input space %s was subtracted" %
(self.__class__.__name__, self._offset_in))
return data
def _forward_data(self, data):
if self._proj is None:
raise RuntimeError, "Mapper needs to be train before used."
# local binding
demean = self._demean
d = np.asmatrix(data)
# Remove input offset if present
if demean and self._offset_in is not None:
d = d - self._offset_in
# Do forward projection
res = (d * self._proj).A
# Add output offset if present
if demean and self._offset_out is not None:
res += self._offset_out
return res
def _reverse_data(self, data):
if self._proj is None:
raise RuntimeError, "Mapper needs to be trained before used."
d = np.asmatrix(data)
# Remove offset if present in output space
if self._demean and self._offset_out is not None:
d = d - self._offset_out
# Do reverse projection
res = (d * self.recon).A
# Add offset in input space
if self._demean and self._offset_in is not None:
res += self._offset_in
return res
##REF: Name was automagically refactored
def _compute_recon(self):
"""Given that a projection is present -- compute reconstruction matrix.
By default -- pseudoinverse of projection matrix. Might be overridden
in derived classes for efficiency.
"""
return np.linalg.pinv(self._proj)
##REF: Name was automagically refactored
def _get_recon(self):
"""Compute (if necessary) and return reconstruction matrix
"""
# (re)build reconstruction matrix
recon = self._recon
if recon is None:
self._recon = recon = self._compute_recon()
return recon
proj = property(fget=lambda self: self._proj, doc="Projection matrix")
recon = property(fget=_get_recon, doc="Backprojection matrix")
|