/usr/share/pyshared/mvpa2/mappers/procrustean.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Procrustean rotation mapper"""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.base import externals
from mvpa2.base.param import Parameter
from mvpa2.base.types import is_datasetlike
from mvpa2.mappers.projection import ProjectionMapper
from mvpa2.base import warning
if __debug__:
from mvpa2.base import debug
class ProcrusteanMapper(ProjectionMapper):
"""Mapper to project from one space to another using Procrustean
transformation (shift + scaling + rotation).
Training this mapper requires data for both source and target space to be
present in the training dataset. The source space data is taken from the
training dataset's ``samples``, while the target space is taken from a
sample attribute corresponding to the ``space`` setting of the
ProcrusteanMapper.
See: http://en.wikipedia.org/wiki/Procrustes_transformation
"""
scaling = Parameter(True, allowedtype='bool',
doc="""Estimate a global scaling factor for the transformation
(no longer rigid body)""")
reflection = Parameter(True, allowedtype='bool',
doc="""Allow for the data to be reflected (so it might not be
a rotation. Effective only for non-oblique transformations.
""")
reduction = Parameter(True, allowedtype='bool',
doc="""If true, it is allowed to map into lower-dimensional
space. Forward transformation might be suboptimal then and
reverse transformation might not recover all original
variance.""")
oblique = Parameter(False, allowedtype='bool',
doc="""Either to allow non-orthogonal transformation -- might
heavily overfit the data if there is less samples than
dimensions. Use `oblique_rcond`.""")
oblique_rcond = Parameter(-1, allowedtype='float',
doc="""Cutoff for 'small' singular values to regularize the
inverse. See :class:`~numpy.linalg.lstsq` for more
information.""")
svd = Parameter('numpy', allowedtype='string (numpy, scipy, dgesvd)',
doc="""Implementation of SVD to use. dgesvd requires ctypes to
be available.""")
def __init__(self, space='targets', **kwargs):
ProjectionMapper.__init__(self, space=space, **kwargs)
self._scale = None
"""Estimated scale"""
if self.params.svd == 'dgesvd' and not externals.exists('liblapack.so'):
warning("Reverting choice of svd for ProcrusteanMapper to be default "
"'numpy' since liblapack.so seems not to be available for "
"'dgesvd'")
self.params.svd = 'numpy'
def _train(self, source):
params = self.params
# Since it is unsupervised, we don't care about labels
datas = ()
odatas = ()
means = ()
shapes = ()
assess_residuals = __debug__ and 'MAP_' in debug.active
target = source.sa[self.get_space()].value
for i, ds in enumerate((source, target)):
if is_datasetlike(ds):
data = np.asarray(ds.samples)
else:
data = ds
if assess_residuals:
odatas += (data,)
if i == 0:
mean = self._offset_in
else:
mean = data.mean(axis=0)
data = data - mean
means += (mean,)
datas += (data,)
shapes += (data.shape,)
# shortcuts for sizes
sn, sm = shapes[0]
tn, tm = shapes[1]
# Check the sizes
if sn != tn:
raise ValueError, "Data for both spaces should have the same " \
"number of samples. Got %d in source and %d in target space" \
% (sn, tn)
# Sums of squares
ssqs = [np.sum(d**2, axis=0) for d in datas]
# XXX check for being invariant?
# needs to be tuned up properly and not raise but handle
for i in xrange(2):
if np.all(ssqs[i] <= np.abs((np.finfo(datas[i].dtype).eps
* sn * means[i] )**2)):
raise ValueError, "For now do not handle invariant in time datasets"
norms = [ np.sqrt(np.sum(ssq)) for ssq in ssqs ]
normed = [ data/norm for (data, norm) in zip(datas, norms) ]
# add new blank dimensions to source space if needed
if sm < tm:
normed[0] = np.hstack( (normed[0], np.zeros((sn, tm-sm))) )
if sm > tm:
if params.reduction:
normed[1] = np.hstack( (normed[1], np.zeros((sn, sm-tm))) )
else:
raise ValueError, "reduction=False, so mapping from " \
"higher dimensionality " \
"source space is not supported. Source space had %d " \
"while target %d dimensions (features)" % (sm, tm)
source, target = normed
if params.oblique:
# Just do silly linear system of equations ;) or naive
# inverse problem
if sn == sm and tm == 1:
T = np.linalg.solve(source, target)
else:
T = np.linalg.lstsq(source, target, rcond=params.oblique_rcond)[0]
ss = 1.0
else:
# Orthogonal transformation
# figure out optimal rotation
if params.svd == 'numpy':
U, s, Vh = np.linalg.svd(np.dot(target.T, source),
full_matrices=False)
elif params.svd == 'scipy':
# would raise exception if not present
externals.exists('scipy', raise_=True)
import scipy
U, s, Vh = scipy.linalg.svd(np.dot(target.T, source),
full_matrices=False)
elif params.svd == 'dgesvd':
from mvpa2.support.lapack_svd import svd as dgesvd
U, s, Vh = dgesvd(np.dot(target.T, source),
full_matrices=True, algo='svd')
else:
raise ValueError('Unknown type of svd %r'%(params.svd))
T = np.dot(Vh.T, U.T)
if not params.reflection:
# then we need to assure that it is only rotation
# "recipe" from
# http://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
# for more and info and original references, see
# http://dx.doi.org/10.1007%2FBF02289451
nsv = len(s)
s[:-1] = 1
s[-1] = np.linalg.det(T)
T = np.dot(U[:, :nsv] * s, Vh)
# figure out scale and final translation
# XXX with reflection False -- not sure if here or there or anywhere...
ss = sum(s)
# if we were to collect standardized distance
# std_d = 1 - sD**2
# select out only relevant dimensions
if sm != tm:
T = T[:sm, :tm]
self._scale = scale = ss * norms[1] / norms[0]
# Assign projection
if self.params.scaling:
proj = scale * T
else:
proj = T
self._proj = proj
if self._demean:
self._offset_out = means[1]
if __debug__ and 'MAP_' in debug.active:
# compute the residuals
res_f = self.forward(odatas[0])
d_f = np.linalg.norm(odatas[1] - res_f)/np.linalg.norm(odatas[1])
res_r = self.reverse(odatas[1])
d_r = np.linalg.norm(odatas[0] - res_r)/np.linalg.norm(odatas[0])
debug('MAP_', "%s, residuals are forward: %g,"
" reverse: %g" % (repr(self), d_f, d_r))
|