This file is indexed.

/usr/share/pyshared/mvpa2/mappers/procrustean.py is in python-mvpa2 2.2.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Procrustean rotation mapper"""

__docformat__ = 'restructuredtext'

import numpy as np
from mvpa2.base import externals
from mvpa2.base.param import Parameter
from mvpa2.base.types import is_datasetlike
from mvpa2.mappers.projection import ProjectionMapper

from mvpa2.base import warning
if __debug__:
    from mvpa2.base import debug



class ProcrusteanMapper(ProjectionMapper):
    """Mapper to project from one space to another using Procrustean
    transformation (shift + scaling + rotation).

    Training this mapper requires data for both source and target space to be
    present in the training dataset. The source space data is taken from the
    training dataset's ``samples``, while the target space is taken from a
    sample attribute corresponding to the ``space`` setting of the
    ProcrusteanMapper.

    See: http://en.wikipedia.org/wiki/Procrustes_transformation
    """
    scaling = Parameter(True, allowedtype='bool',
                doc="""Estimate a global scaling factor for the transformation
                       (no longer rigid body)""")
    reflection = Parameter(True, allowedtype='bool',
                 doc="""Allow for the data to be reflected (so it might not be
                     a rotation. Effective only for non-oblique transformations.
                     """)
    reduction = Parameter(True, allowedtype='bool',
                 doc="""If true, it is allowed to map into lower-dimensional
                     space. Forward transformation might be suboptimal then and
                     reverse transformation might not recover all original
                     variance.""")
    oblique = Parameter(False, allowedtype='bool',
                 doc="""Either to allow non-orthogonal transformation -- might
                     heavily overfit the data if there is less samples than
                     dimensions. Use `oblique_rcond`.""")
    oblique_rcond = Parameter(-1, allowedtype='float',
                 doc="""Cutoff for 'small' singular values to regularize the
                     inverse. See :class:`~numpy.linalg.lstsq` for more
                     information.""")
    svd = Parameter('numpy', allowedtype='string (numpy, scipy, dgesvd)',
                 doc="""Implementation of SVD to use. dgesvd requires ctypes to
                 be available.""")
    def __init__(self, space='targets', **kwargs):
        ProjectionMapper.__init__(self, space=space, **kwargs)

        self._scale = None
        """Estimated scale"""
        if self.params.svd == 'dgesvd' and not externals.exists('liblapack.so'):
            warning("Reverting choice of svd for ProcrusteanMapper to be default "
                    "'numpy' since liblapack.so seems not to be available for "
                    "'dgesvd'")
            self.params.svd = 'numpy'


    def _train(self, source):
        params = self.params
        # Since it is unsupervised, we don't care about labels
        datas = ()
        odatas = ()
        means = ()
        shapes = ()

        assess_residuals = __debug__ and 'MAP_' in debug.active

        target = source.sa[self.get_space()].value

        for i, ds in enumerate((source, target)):
            if is_datasetlike(ds):
                data = np.asarray(ds.samples)
            else:
                data = ds
            if assess_residuals:
                odatas += (data,)
            if i == 0:
                mean = self._offset_in
            else:
                mean = data.mean(axis=0)
            data = data - mean
            means += (mean,)
            datas += (data,)
            shapes += (data.shape,)

        # shortcuts for sizes
        sn, sm = shapes[0]
        tn, tm = shapes[1]

        # Check the sizes
        if sn != tn:
            raise ValueError, "Data for both spaces should have the same " \
                  "number of samples. Got %d in source and %d in target space" \
                  % (sn, tn)

        # Sums of squares
        ssqs = [np.sum(d**2, axis=0) for d in datas]

        # XXX check for being invariant?
        #     needs to be tuned up properly and not raise but handle
        for i in xrange(2):
            if np.all(ssqs[i] <= np.abs((np.finfo(datas[i].dtype).eps
                                       * sn * means[i] )**2)):
                raise ValueError, "For now do not handle invariant in time datasets"

        norms = [ np.sqrt(np.sum(ssq)) for ssq in ssqs ]
        normed = [ data/norm for (data, norm) in zip(datas, norms) ]

        # add new blank dimensions to source space if needed
        if sm < tm:
            normed[0] = np.hstack( (normed[0], np.zeros((sn, tm-sm))) )

        if sm > tm:
            if params.reduction:
                normed[1] = np.hstack( (normed[1], np.zeros((sn, sm-tm))) )
            else:
                raise ValueError, "reduction=False, so mapping from " \
                      "higher dimensionality " \
                      "source space is not supported. Source space had %d " \
                      "while target %d dimensions (features)" % (sm, tm)

        source, target = normed
        if params.oblique:
            # Just do silly linear system of equations ;) or naive
            # inverse problem
            if sn == sm and tm == 1:
                T = np.linalg.solve(source, target)
            else:
                T = np.linalg.lstsq(source, target, rcond=params.oblique_rcond)[0]
            ss = 1.0
        else:
            # Orthogonal transformation
            # figure out optimal rotation
            if params.svd == 'numpy':
                U, s, Vh = np.linalg.svd(np.dot(target.T, source),
                               full_matrices=False)
            elif params.svd == 'scipy':
                # would raise exception if not present
                externals.exists('scipy', raise_=True)
                import scipy
                U, s, Vh = scipy.linalg.svd(np.dot(target.T, source),
                               full_matrices=False)
            elif params.svd == 'dgesvd':
                from mvpa2.support.lapack_svd import svd as dgesvd
                U, s, Vh = dgesvd(np.dot(target.T, source),
                                    full_matrices=True, algo='svd')
            else:
                raise ValueError('Unknown type of svd %r'%(params.svd))
            T = np.dot(Vh.T, U.T)

            if not params.reflection:
                # then we need to assure that it is only rotation
                # "recipe" from
                # http://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
                # for more and info and original references, see
                # http://dx.doi.org/10.1007%2FBF02289451
                nsv = len(s)
                s[:-1] = 1
                s[-1] = np.linalg.det(T)
                T = np.dot(U[:, :nsv] * s, Vh)

            # figure out scale and final translation
            # XXX with reflection False -- not sure if here or there or anywhere...
            ss = sum(s)

        # if we were to collect standardized distance
        # std_d = 1 - sD**2

        # select out only relevant dimensions
        if sm != tm:
            T = T[:sm, :tm]

        self._scale = scale = ss * norms[1] / norms[0]
        # Assign projection
        if self.params.scaling:
            proj = scale * T
        else:
            proj = T
        self._proj = proj

        if self._demean:
            self._offset_out = means[1]

        if __debug__ and 'MAP_' in debug.active:
            # compute the residuals
            res_f = self.forward(odatas[0])
            d_f = np.linalg.norm(odatas[1] - res_f)/np.linalg.norm(odatas[1])
            res_r = self.reverse(odatas[1])
            d_r = np.linalg.norm(odatas[0] - res_r)/np.linalg.norm(odatas[0])
            debug('MAP_', "%s, residuals are forward: %g,"
                  " reverse: %g" % (repr(self), d_f, d_r))