This file is indexed.

/usr/share/pyshared/mvpa2/mappers/fx.py is in python-mvpa2 2.2.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Transform data by applying a function along samples or feature axis."""

__docformat__ = 'restructuredtext'

import numpy as np
import inspect

from mvpa2.base import warning
from mvpa2.base.node import Node
from mvpa2.datasets import Dataset
from mvpa2.base.dochelpers import _str, _repr_attrs
from mvpa2.mappers.base import Mapper
from mvpa2.misc.support import array_whereequal
from mvpa2.base.dochelpers import borrowdoc

from mvpa2.misc.transformers import sum_of_abs, max_of_abs

if __debug__:
    from mvpa2.base import debug

class FxMapper(Mapper):
    """Apply a custom transformation to (groups of) samples or features.
    """

    is_trained = True
    """Indicate that this mapper is always trained."""

    def __init__(self, axis, fx, fxargs=None, uattrs=None,
                 attrfx='merge'):
        """
        Parameters
        ----------
        axis : {'samples', 'features'}
        fx : callable
        fxargs : tuple
        uattrs : list
          List of attribute names to consider. All possible combinations
          of unique elements of these attributes are used to determine the
          sample groups to operate on.
        attrfx : callable
          Functor that is called with each sample attribute elements matching
          the respective samples group. By default the unique value is
          determined. If the content of the attribute is not uniform for a
          samples group a unique string representation is created.
          If `None`, attributes are not altered.
        """
        Mapper.__init__(self)

        if not axis in ['samples', 'features']:
            raise ValueError("%s `axis` arguments can only be 'samples' or "
                             "'features' (got: '%s')." % repr(axis))
        self.__axis = axis
        self.__uattrs = uattrs
        self.__fx = fx
        if not fxargs is None:
            self.__fxargs = fxargs
        else:
            self.__fxargs = ()
        if attrfx == 'merge':
            self.__attrfx = _uniquemerge2literal
        else:
            self.__attrfx = attrfx


    @borrowdoc(Mapper)
    def __repr__(self, prefixes=[]):
        return super(FxMapper, self).__repr__(
            prefixes=prefixes
            + _repr_attrs(self, ['axis', 'fx', 'uattrs'])
            + _repr_attrs(self, ['fxargs'], default=())
            + _repr_attrs(self, ['attrfx'], default='merge')
            )

    def __str__(self):
        return _str(self, fx=self.__fx.__name__)


    def _train(self, ds):
        # right now it needs no training, if anything is added here make sure to
        # remove is_trained class attribute
        pass

    def __smart_apply_along_axis(self, data):
        # because apply_along_axis could be very much slower than a
        # direct invocation of native functions capable of operating
        # along specific axis, let's make it smarter for those we know
        # could do that.
        fx = None
        naxis = {'samples': 0, 'features': 1}[self.__axis]
        try:
            # if first argument is 'axis' -- just proceed with a native call
            if inspect.getargs(self.__fx.__code__).args[1] == 'axis':
                fx = self.__fx
            elif __debug__:
                debug('FX', "Will apply %s via apply_along_axis",
                          (self.__fx))
        except Exception, e:
            if __debug__:
                debug('FX',
                      "Failed to deduce either %s has 'axis' argument: %s",
                      (self.__fx, repr(e)))
            pass

        if fx is not None:
            if __debug__:
                debug('FX', "Applying %s directly to data giving axis=%d",
                      (self.__fx, naxis))
            mdata = fx(data, naxis, *self.__fxargs)
        else:
            # either failed to deduce signature or just didn't
            # have 'axis' second
            # apply fx along naxis for each sample/feature
            mdata = np.apply_along_axis(self.__fx, naxis, data, *self.__fxargs)
        assert(mdata.ndim in (data.ndim, data.ndim-1))
        return mdata

    @borrowdoc(Mapper)
    def _forward_data(self, data):
        if not self.__uattrs is None:
            raise RuntimeError("%s does not support forward-mapping of plain "
                               "data when data grouping based on attributes "
                               "is requested"
                               % self.__class__.__name__)

        mdata = self.__smart_apply_along_axis(data)

        if self.__axis == 'features':
            if len(mdata.shape) == 1:
                # in case we only have a scalar per sample we need to transpose
                # it properly, to keep the length of the samples axis intact
                mdata = np.atleast_2d(mdata).T
        return np.atleast_2d(mdata)

    @borrowdoc(Mapper)
    def _forward_dataset(self, ds):
        if self.__uattrs is None:
            mdata, sattrs = self._forward_dataset_full(ds)
            single_attr = True
            # yoh: Had another tentative solution but nope...  I guess
            #      logic of wrapping into list should go into _full
            #      and _grouped
            #(len(mdata.shape) != len(ds.shape) \
            #or
            #(mdata.shape != ds.shape and mdata.shape[0] == 1))
        else:
            mdata, sattrs = self._forward_dataset_grouped(ds)
            single_attr = False

        samples = np.atleast_2d(mdata)

        # return early if there is no attribute treatment desired
        if self.__attrfx is None:
            out = ds.copy(deep=False)
            out.samples = samples
            return out

        # not copying the samples attributes, since they have to be modified
        # anyway
        if self.__axis == 'samples':
            out = ds.copy(deep=False, sa=[])
            col = out.sa
            col.set_length_check(samples.shape[0])
        else:
            out = ds.copy(deep=False, fa=[])
            col = out.fa
            col.set_length_check(samples.shape[1])
        # assign samples to do COW
        out.samples = samples

        for attr in sattrs:
            a = sattrs[attr]
            # need to handle single literal attributes
            if single_attr:
                col[attr] = [a]
            else:
                # TODO -- here might puke if e.g it is a list where some items
                # are empty lists... I guess just wrap in try/except and
                # do dtype=object if catch
                col[attr] = np.atleast_1d(a)

        return out


    def _forward_dataset_grouped(self, ds):
        mdata = [] # list of samples array pieces
        if self.__axis == 'samples':
            col = ds.sa
            axis = 0
        elif self.__axis == 'features':
            col = ds.fa
            axis = 1
        else:
            raise RuntimeError("This should not have happened!")

        attrs = dict(zip(col.keys(), [[] for i in col]))

        # create a dictionary for all unique elements in all attribute this
        # mapper should operate on
        self.__attrcombs = dict(zip(self.__uattrs,
                                [col[attr].unique for attr in self.__uattrs]))
        # let it generate all combinations of unique elements in any attr
        for comb in _orthogonal_permutations(self.__attrcombs):
            selector = reduce(np.multiply,
                                [array_whereequal(col[attr].value, value)
                                 for attr, value in comb.iteritems()])
            # process the samples
            if axis == 0:
                samples = ds.samples[selector]
            else:
                samples = ds.samples[:, selector]

            # check if there were any samples for such a combination,
            # if not -- warning and skip the rest of the loop body
            if not len(samples):
                warning('There were no samples for combination %s. It might be '
                        'a sign of a disbalanced dataset %s.' % (comb, ds))
                continue

            fxed_samples = self.__smart_apply_along_axis(samples)
            mdata.append(fxed_samples)
            if not self.__attrfx is None:
                # and now all samples attributes
                fxed_attrs = [self.__attrfx(col[attr].value[selector])
                                    for attr in col]
                for i, attr in enumerate(col):
                    attrs[attr].append(fxed_attrs[i])

        if axis == 0:
            mdata = np.vstack(mdata)
        else:
            mdata = np.vstack(np.transpose(mdata))
        return mdata, attrs


    def _forward_dataset_full(self, ds):
        # simply map the all of the data
        mdata = self._forward_data(ds.samples)

        # if the attributes should not be handled, don't handle them
        if self.__attrfx is None:
            return mdata, None

        # and now all attributes
        if self.__axis == 'samples':
            attrs = dict(zip(ds.sa.keys(),
                              [self.__attrfx(ds.sa[attr].value)
                                    for attr in ds.sa]))
        if self.__axis == 'features':
            attrs = dict(zip(ds.fa.keys(),
                              [self.__attrfx(ds.fa[attr].value)
                                    for attr in ds.fa]))
        return mdata, attrs

    axis = property(fget=lambda self:self.__axis)
    fx = property(fget=lambda self:self.__fx)
    fxargs = property(fget=lambda self:self.__fxargs)
    uattrs = property(fget=lambda self:self.__uattrs)
    attrfx = property(fget=lambda self:self.__attrfx)

#
# Convenience functions to create some useful mapper with less complexity
#

def mean_sample(attrfx='merge'):
    """Returns a mapper that computes the mean sample of a dataset.

    Parameters
    ----------
    attrfx : 'merge' or callable, optional
      Callable that is used to determine the sample attributes of the computed
      mean samples. By default this will be a string representation of all
      unique value of a particular attribute in any sample group. If there is
      only a single value in a group it will be used as the new attribute value.

    Returns
    -------
    FxMapper instance.
    """
    return FxMapper('samples', np.mean, attrfx=attrfx)


def mean_group_sample(attrs, attrfx='merge'):
    """Returns a mapper that computes the mean samples of unique sample groups.

    The sample groups are identified by the unique combination of all
    values of a set of provided sample attributes.  Order of output
    samples might differ from original and correspond to sorted order
    of corresponding `attrs`.

    Parameters
    ----------
    attrs : list
      List of sample attributes whose unique values will be used to identify the
      samples groups.
    attrfx : 'merge' or callable, optional
      Callable that is used to determine the sample attributes of the computed
      mean samples. By default this will be a string representation of all
      unique value of a particular attribute in any sample group. If there is
      only a single value in a group it will be used as the new attribute value.

    Returns
    -------
    FxMapper instance.
    """
    return FxMapper('samples', np.mean, uattrs=attrs, attrfx=attrfx)


def sum_sample(attrfx='merge'):
    """Returns a mapper that computes the sum sample of a dataset.

    Parameters
    ----------
    attrfx : 'merge' or callable, optional
      Callable that is used to determine the sample attributes of the computed
      sum samples. By default this will be a string representation of all
      unique value of a particular attribute in any sample group. If there is
      only a single value in a group it will be used as the new attribute value.

    Returns
    -------
    FxMapper instance.
    """
    return FxMapper('samples', np.sum, attrfx=attrfx)


def mean_feature(attrfx='merge'):
    """Returns a mapper that computes the mean feature of a dataset.

    Parameters
    ----------
    attrfx : 'merge' or callable, optional
      Callable that is used to determine the feature attributes of the computed
      mean features. By default this will be a string representation of all
      unique value of a particular attribute in any feature group. If there is
      only a single value in a group it will be used as the new attribute value.

    Returns
    -------
    FxMapper instance.
    """
    return FxMapper('features', np.mean, attrfx=attrfx)


def mean_group_feature(attrs, attrfx='merge'):
    """Returns a mapper that computes the mean features of unique feature groups.

    The feature groups are identified by the unique combination of all values of
    a set of provided feature attributes.  Order of output
    features might differ from original and correspond to sorted order
    of corresponding `attrs`.

    Parameters
    ----------
    attrs : list
      List of feature attributes whos unique values will be used to identify the
      feature groups.
    attrfx : 'merge' or callable, optional
      Callable that is used to determine the feature attributes of the computed
      mean features. By default this will be a string representation of all
      unique value of a particular attribute in any feature group. If there is
      only a single value in a group it will be used as the new attribute value.

    Returns
    -------
    FxMapper instance.
    """
    return FxMapper('features', np.mean, uattrs=attrs, attrfx=attrfx)


def absolute_features():
    """Returns a mapper that converts features into absolute values.

    This mapper does not alter any attributes.

    Returns
    -------
    FxMapper instance.
    """
    return FxMapper('features', np.absolute, attrfx=None)


def sumofabs_sample():
    """Returns a mapper that returns the sum of absolute values of all samples.
    """
    return FxMapper('samples', sum_of_abs)

def maxofabs_sample():
    """Returns a mapper that finds max of absolute values of all samples.
    """
    return FxMapper('samples', max_of_abs)
#
# Utility functions
#

def _uniquemerge2literal(attrs):
    """Compress a sequence into its unique elements (with string merge).

    Whenever there is more then one unique element in `attrs`, these
    are converted to a string and join with a '+' character inbetween.

    Parameters
    ----------
    attrs : sequence, arbitrary

    Returns
    -------
    Non-sequence arguments are passed as is. Sequences are converted into
    a single item representation (see above) and returned.  None is returned
    in case of an empty sequence.
    """
    try:
        unq = np.unique(attrs)
    except TypeError:
        # so it is not an iterable -- return the original
        return attrs
    lunq = len(unq)
    if lunq > 1:
        return '+'.join([str(l) for l in unq])
    elif lunq:                          # first entry (non
        return unq[0]
    else:
        return None


def _orthogonal_permutations(a_dict):
    """
    Takes a dictionary with lists as values and returns all permutations
    of these list elements in new dicts.

    This function is useful, when a method with several arguments
    shall be tested and all of the arguments can take several values.

    The order is not defined, therefore the elements should be
    orthogonal to each other.

    >>> for i in _orthogonal_permutations({'a': [1,2,3], 'b': [4,5]}):
    ...     print i
    {'a': 1, 'b': 4}
    {'a': 1, 'b': 5}
    {'a': 2, 'b': 4}
    {'a': 2, 'b': 5}
    {'a': 3, 'b': 4}
    {'a': 3, 'b': 5}
    """
    # Taken from MDP (LGPL)
    pool = dict(a_dict)
    args = []
    for func, all_args in pool.items():
        # check the size of the list in the second item of the tuple
        args_with_fun = [(func, arg) for arg in all_args]
        args.append(args_with_fun)
    for i in _product(args):
        yield dict(i)


def _product(iterable):
    # MDP took it and adapted it from itertools 2.6 (Python license)
    # PyMVPA took it from MDP (LGPL)
    pools = tuple(iterable)
    result = [[]]
    for pool in pools:
        result = [x+[y] for x in result for y in pool]
    for prod in result:
        yield tuple(prod)



class BinaryFxNode(Node):
    """Extract a dataset attribute and call a function with it and the samples.

    This node takes a dataset's samples and a configurable attribute and passes
    them to a custom callable. This node can be used to implement comparisons,
    or error quantifications.

    When called with a dataset the node returns a new dataset with the return
    value of the callable as samples.
    """
    # TODO: Allow using feature attributes too
    def __init__(self, fx, space, **kwargs):
        """
        Parameters
        ----------
        fx : callable
          Callable that is passed with the dataset samples as first and
          attribute values as second argument.
        space : str
          name of the sample attribute that contains the target values.
        """
        Node.__init__(self, space=space, **kwargs)
        self.fx = fx


    def _call(self, ds):
        # extract samples and targets and pass them to the errorfx
        targets = ds.sa[self.get_space()].value
        # squeeze to remove bogus dimensions and prevent problems during
        # comparision later on
        values = np.atleast_1d(ds.samples.squeeze())
        if not values.shape == targets.shape:
            # if they have different shape numpy's broadcasting might introduce
            # pointless stuff (compare individual features or yield a single
            # boolean
            raise ValueError("Trying to compute an error between data of "
                             "different shape (%s vs. %s)."
                             % (values.shape, targets.shape))
        err = self.fx(values, targets)
        if np.isscalar(err):
            err = np.array(err, ndmin=2)
        return Dataset(err)