/usr/share/pyshared/mvpa2/mappers/boxcar.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Data mapper"""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.mappers.base import Mapper
from mvpa2.clfs.base import accepts_dataset_as_samples
from mvpa2.base.dochelpers import _str
if __debug__:
from mvpa2.base import debug
class BoxcarMapper(Mapper):
"""Mapper to combine multiple samples into a single sample.
Notes
-----
This mapper is somewhat unconventional since it doesn't preserve number
of samples (ie the size of 0-th dimension).
"""
# TODO: extend with the possibility to provide real onset vectors and a
# samples attribute that is used to determine the actual sample that
# is matching a particular onset. The difference between target onset
# and sample could be stored as an additional sample attribute. Some
# utility functionality (outside BoxcarMapper) could be used to merge
# arbitrary sample attributes into the samples matrix (with
# appropriate mapper adjustment, e.g. CombinedMapper).
def __init__(self, startpoints, boxlength, offset=0, **kwargs):
"""
Parameters
----------
startpoints : sequence
Index values along the first axis of 'data'.
boxlength : int
The number of elements after 'startpoint' along the first axis of
'data' to be considered for the boxcar.
offset : int
The offset between the provided starting point and the actual start
of the boxcar.
"""
Mapper.__init__(self, **kwargs)
self._outshape = None
startpoints = np.asanyarray(startpoints)
if np.issubdtype(startpoints.dtype, 'i'):
self.startpoints = startpoints
else:
if __debug__:
debug('MAP', "Boxcar: obtained startpoints are not of int type."
" Rounding and changing dtype")
self.startpoints = np.asanyarray(np.round(startpoints), dtype='i')
# Sanity checks
if boxlength < 1:
raise ValueError, "Boxlength lower than 1 makes no sense."
if boxlength - int(boxlength) != 0:
raise ValueError, "boxlength must be an integer value."
self.boxlength = int(boxlength)
self.offset = offset
self.__selectors = None
# build a list of list where each sublist contains the indexes of to be
# averaged data elements
self.__selectors = [ slice(i + offset, i + offset + boxlength) \
for i in startpoints ]
def __reduce__(self):
# python < 2.6 cannot copy slices, we will use the constructor the get
# them back and additionally reapply the stae of the object (except for
# the bad bad slices)
state = self.__dict__.copy()
badguy = '_%s__selectors' % self.__class__.__name__
if badguy in state:
del state[badguy]
return (self.__class__,
(self.startpoints, self.boxlength, self.offset),
state)
@accepts_dataset_as_samples
def _train(self, data):
startpoints = self.startpoints
boxlength = self.boxlength
if __debug__:
offset = self.offset
for sp in startpoints:
if ( sp + offset + boxlength - 1 > len(data)-1 ) \
or ( sp + offset < 0 ):
raise ValueError('Illegal box (start: %i, offset: %i, '
'length: %i) with total input sample being %i.' \
% (sp, offset, boxlength, len(data)))
self._outshape = (len(startpoints), boxlength) + data.shape[1:]
def __repr__(self):
s = super(BoxcarMapper, self).__repr__()
return s.replace("(", "(boxlength=%d, offset=%d, startpoints=%s, " %
(self.boxlength, self.offset, str(self.startpoints)),
1)
def __str__(self):
return _str(self, bl=self.boxlength)
def forward1(self, data):
# if we have a single 'raw' sample (not a boxcar)
# extend it to cover the full box -- useful if one
# wants to forward map a mask in raw dataspace (e.g.
# fMRI ROI or channel map) into an appropriate mask vector
if not self._outshape:
raise RuntimeError("BoxcarMapper needs to be trained before "
".forward1() can be used.")
# first axes need to match
if not data.shape[0] == self._outshape[2]:
raise ValueError("Data shape %s does not match sample shape %s."
% (data.shape[0], self._outshape[2]))
return np.vstack([data[np.newaxis]] * self.boxlength)
def _forward_data(self, data):
"""Project an ND matrix into N+1D matrix
This method also handles the special of forward mapping a single 'raw'
sample. Such a sample is extended (by concatenating clones of itself) to
cover a full boxcar. This functionality is only availably after a full
data array has been forward mapped once.
Returns
-------
array: (#startpoint, ...)
"""
# NOTE: _forward_dataset() relies on the assumption that the following
# also works with 1D arrays and still yields sane results
return np.vstack([data[box][np.newaxis] for box in self.__selectors])
def _forward_dataset(self, dataset):
msamp = self._forward_data(dataset.samples)
# make a shallow copy of the dataset, but excluding all sample
# and feature attributes, since they need to be transformed anyway
mds = dataset.copy(deep=False, sa=[], fa=[])
# assign the new samples and adjust the length check of the collections
mds.samples = msamp
mds.sa.set_length_check(len(mds))
mds.fa.set_length_check(mds.nfeatures)
# map old feature attributes -- which simply get broadcasted along the
# boxcar
for k in dataset.fa:
mds.fa[k] = self.forward1(dataset.fa[k].value)
# map old sample attributes -- which simply get stacked into one for all
# boxcar elements/samples
for k in dataset.sa:
# using _forward_data() instead of forward(), since we know that
# this implementation can actually deal with 1D-arrays
mds.sa[k] = self._forward_data(dataset.sa[k].value)
# create the box offset attribute if space name is given
if self.get_space():
mds.fa[self.get_space() + '_offsetidx'] = np.arange(self.boxlength,
dtype='int')
mds.sa[self.get_space() + '_onsetidx'] = self.startpoints.copy()
return mds
def reverse1(self, data):
if __debug__:
if not data.shape == self._outshape[1:]:
raise ValueError("BoxcarMapper has not been train to "
"reverse-map %s-shaped data, but %s."
% (data.shape, self._outshape[1:]))
# reimplemented since it is really only that
return data
def _reverse_data(self, data):
if len(data.shape) < 2:
# this is not something that this mapper created -- let's broadcast
# its elements and hope that it would work
return np.repeat(data, self.boxlength)
# stack them all together -- this will cause overlapping boxcars to
# result in multiple identical samples
if not data.shape[1] == self.boxlength:
# stacking doesn't make sense, since we got something strange
raise ValueError("%s cannot reverse-map, since the number of "
"elements along the second axis (%i) does not "
"match the boxcar-length (%i)."
% (self.__class__.__name__,
data.shape[1],
self.boxlength))
return np.concatenate(data)
def _reverse_dataset(self, dataset):
msamp = self._reverse_data(dataset.samples)
# make a shallow copy of the dataset, but excluding all sample
# and feature attributes, since they need to be transformed anyway
mds = dataset.copy(deep=False, sa=[], fa=[])
mds.samples = msamp
mds.sa.set_length_check(len(mds))
mds.fa.set_length_check(mds.nfeatures)
# map old feature attributes -- which simply is taken the first one
# and kill the inspace attribute, since it
inspace = self.get_space()
for k in dataset.fa:
if inspace is None or k != (inspace + '_offsetidx'):
mds.fa[k] = dataset.fa[k].value[0]
# reverse-map old sample attributes
for k in dataset.sa:
if inspace is None or k != (inspace + '_onsetidx'):
mds.sa[k] = self._reverse_data(dataset.sa[k].value)
return mds
|