This file is indexed.

/usr/share/pyshared/mvpa2/kernels/sg.py is in python-mvpa2 2.2.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""PyMVPA shogun-based kernels

Provides interface to kernels defined in shogun toolbox.  Commonly
used kernels are provided with convenience classes: `LinearSGKernel`,
`RbfSGKernel`, `PolySGKernel`.  If you need to use some other shogun
kernel, use `CustomSGKernel` to define one.
"""

__docformat__ = 'restructuredtext'

import numpy as np

from mvpa2.base.externals import exists, versions
from mvpa2.kernels.base import Kernel
from mvpa2.base.param import Parameter

if exists('shogun', raise_=True):
    import shogun.Kernel as sgk
    from shogun.Features import RealFeatures
else:
    # Just to please sphinx documentation
    class Bogus(object):
        pass
    sgk = Bogus()
    sgk.LinearKernel = None
    sgk.GaussianKernel = None
    sgk.PolyKernel = None

if __debug__:
    from mvpa2.base import debug

class SGKernel(Kernel):
    """A Kernel object with internal representation in Shogun"""

    def as_sg(self):
        return self

    def as_raw_sg(self):
        return self._k

    def __array__(self):
        return self._k.get_kernel_matrix()

    @staticmethod
    def _data2features(data):
        """Converts data to shogun features"""
        if __debug__:
            debug('KRN_SG',
                  'Converting data of shape %s into shogun RealFeatures'
                  % (data.shape,))
        res = RealFeatures(data.astype(float).T)
        if __debug__:
            debug('KRN_SG', 'Done converting data')

        return res

# Conversion methods
def _as_raw_sg(kernel):
    """Converts directly to a Shogun kernel"""
    return sgk.CustomKernel(kernel.as_raw_np())
def _as_sg(kernel):
    """Converts this kernel to a Shogun-based representation"""
    return PrecomputedSGKernel(matrix=kernel.as_raw_np())
Kernel.add_conversion('sg', _as_sg, _as_raw_sg)


class _BasicSGKernel(SGKernel):
    """Abstract class which can handle most shogun kernel types

    Subclasses can specify new kernels using the following declarations:

      - __kernel_cls__ = Shogun kernel class
      - __kp_order__ = Tuple which specifies the order of kernel params.
        If there is only one kernel param, this is not necessary
    """

    __TODO__ = """
    - Think either normalizer_* should not become proper Parameter.
    """

    def __init__(self, normalizer_cls=None, normalizer_args=None, **kwargs):
        """
        Parameters
        ----------
        normalizer_cls : sg.Kernel.CKernelNormalizer
          Class to use as a normalizer for the kernel.  Will be instantiated
          upon compute().  Only supported for shogun >= 0.6.5.
          By default (if left None) assigns IdentityKernelNormalizer to assure no
          normalization.
        normalizer_args : None or list
          If necessary, provide a list of arguments for the normalizer.
        """
        SGKernel.__init__(self, **kwargs)
        if (normalizer_cls is not None) and (versions['shogun:rev'] < 3377):
            raise ValueError, \
               "Normalizer specification is supported only for sg >= 0.6.5. " \
               "Please upgrade shogun python modular bindings."

        if normalizer_cls is None and exists('sg ge 0.6.5'):
            normalizer_cls = sgk.IdentityKernelNormalizer
        self._normalizer_cls = normalizer_cls

        if normalizer_args is None:
            normalizer_args = []
        self._normalizer_args = normalizer_args

    def _compute(self, d1, d2):
        d1 = SGKernel._data2features(d1)
        d2 = SGKernel._data2features(d2)
        try:
            order = self.__kp_order__
        except AttributeError:
            # XXX may be we could use param.index to have them sorted?
            order = self.params.keys()
        kvals = [self.params[kp].value for kp in order]
        self._k = self.__kernel_cls__(d1, d2, *kvals)

        if self._normalizer_cls:
            self._k.set_normalizer(
                self._normalizer_cls(*self._normalizer_args))


class CustomSGKernel(_BasicSGKernel):
    """Class which can wrap any Shogun kernel and it's kernel parameters
    """
    # TODO: rename args here for convenience?
    def __init__(self, kernel_cls, kernel_params=[], **kwargs):
        """Initialize CustomSGKernel.

        Parameters
        ----------
        kernel_cls : Shogun.Kernel
          Class of a Kernel from Shogun
        kernel_params : list
          Each item in this list should be a tuple of (kernelparamname, value),
          and the order is the explicit order required by the Shogun constructor
        """
        self.__kernel_cls__ = kernel_cls # These are normally static

        _BasicSGKernel.__init__(self, **kwargs)
        order = []
        for k, v in kernel_params:
            self.params[k] = Parameter(default=v)
            order.append(k)
        self.__kp_order__ = tuple(order)

class LinearSGKernel(_BasicSGKernel):
    """A basic linear kernel computed via Shogun: K(a,b) = a*b.T"""
    __kernel_cls__ = sgk.LinearKernel
    __kernel_name__ = 'linear'


class RbfSGKernel(_BasicSGKernel):
    """Radial basis function: K(a,b) = exp(-||a-b||**2/sigma)"""
    __kernel_cls__ = sgk.GaussianKernel
    __kernel_name__ = 'rbf'
    sigma = Parameter(1, doc="Width/division parameter for gaussian kernel")

    def __init__(self, **kwargs):
        # Necessary for proper docstring construction
        _BasicSGKernel.__init__(self, **kwargs)


class PolySGKernel(_BasicSGKernel):
    """Polynomial kernel: K(a,b) = (a*b.T + c)**degree
    c is 1 if and only if 'inhomogenous' is True
    """
    __kernel_cls__ = sgk.PolyKernel
    __kernel_name__ = 'poly'
    __kp_order__ = ('degree', 'inhomogenous')
    degree = Parameter(2, allowedtype=int, doc="Polynomial order of the kernel")
    inhomogenous = Parameter(True, allowedtype=bool,
                             doc="Whether +1 is added within the expression")

    if not exists('sg ge 0.6.5'):

        use_normalization = Parameter(False, allowedtype=bool,
                                      doc="Optional normalization")
        __kp_order__ = __kp_order__ + ('use_normalization',)

    def __init__(self, **kwargs):
        # Necessary for proper docstring construction
        _BasicSGKernel.__init__(self, **kwargs)

class PrecomputedSGKernel(SGKernel):
    """A kernel which is precomputed from a numpy array or a Shogun kernel"""
    # This class can't be handled directly by BasicSGKernel because it never
    # should take data, and never has compute called, etc

    # NB: To avoid storing kernel twice, self.params.matrix = self._k once the
    # kernel is 'computed'

    def __init__(self, matrix=None, **kwargs):
        """Initialize PrecomputedSGKernel

        Parameters
        ----------
        matrix : SGKernel or Kernel or ndarray
          Kernel matrix to be used
        """
        # Convert to appropriate kernel for input
        if isinstance(matrix, SGKernel):
            k = matrix._k # Take internal shogun
        elif isinstance(matrix, Kernel):
            k = matrix.as_raw_np() # Convert to NP otherwise
        else:
            # Otherwise SG would segfault ;-)
            k = np.array(matrix)

        SGKernel.__init__(self, **kwargs)

        if versions['shogun:rev'] >= 4455:
            self._k = sgk.CustomKernel(k)
        else:
            raise RuntimeError, \
                  "Cannot create PrecomputedSGKernel using current version" \
                  " of shogun -- please upgrade"
            # Following lines are not effective since we should have
            # also provided data for CK in those earlier versions
            #self._k = sgk.CustomKernel()
            #self._k.set_full_kernel_matrix_from_full(k)

    def compute(self, *args, **kwargs):
        """'Compute' `PrecomputedSGKernel` -- no actual "computation" is done
        """
        pass