This file is indexed.

/usr/share/pyshared/mvpa2/kernels/np.py is in python-mvpa2 2.2.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   Copyright (c) 2008 Emanuele Olivetti <emanuele@relativita.com> and
#   PyMVPA Team. See COPYING file distributed along with the PyMVPA
#   package for complete list of copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Kernels for Gaussian Process Regression and Classification."""


_DEV__DOC__ = """
Make use of Parameter Collections to keep parameters of the
kernels. Then we would get a uniform .reset() functionality. Now reset
is provided just for parts which are failing in the unittests, but
there is many more places where they are not reset properly if
classifier gets trained on some new data of different dimensionality
"""

__docformat__ = 'restructuredtext'


import numpy as np

from mvpa2.base.state import ConditionalAttribute
from mvpa2.base.param import Parameter
from mvpa2.misc.exceptions import InvalidHyperparameterError
from mvpa2.clfs.distance import squared_euclidean_distance
from mvpa2.kernels.base import NumpyKernel
if __debug__:
    from mvpa2.base import debug, warning

# Simple stuff

class LinearKernel(NumpyKernel):
    """Simple linear kernel: K(a,b) = a*b.T"""
    def _compute(self, d1, d2):
        self._k = np.dot(d1, d2.T)


class PolyKernel(NumpyKernel):
    """Polynomial kernel: K(a,b) = (gamma*a*b.T+coef0)**degree"""
    gamma = Parameter(1, doc='Gamma scaling coefficient')
    degree = Parameter(2, doc="Polynomial degree")
    coef0 = Parameter(1, doc="Offset added to dot product before exponent")
    
    def _compute(self, d1, d2):
        self._k = np.power(self.params.gamma*np.dot(d1, d2.T)+self.params.coef0,
                          self.params.degree)


class RbfKernel(NumpyKernel):
    """Radial basis function (aka Gausian, aka ) kernel
    K(a,b) = exp(-||a-b||**2/sigma)
    """
    sigma = Parameter(1.0, allowedtype=float, doc="Width parameter sigma")
    
    def _compute(self, d1, d2):
        # Do the Rbf
        self._k = np.exp(-squared_euclidean_distance(d1,d2) / self.params.sigma)
        
# More complex
class ConstantKernel(NumpyKernel):
    """The constant kernel class.
    """

    sigma_0 = Parameter(1.0,
                        doc="""
       A simple constant squared value of which is broadcasted across
       kernel. In the case of GPR -- standard deviation of the Gaussian
       prior probability N(0,sigma_0**2) of the intercept of the
       constant regression.""")

    def _compute(self, data1, data2):
        """Compute kernel matrix.

        Parameters
        ----------
        data1 : numpy.ndarray
          lhs data
        data2 : numpy.ndarray
          rhs data
        """
        self._k = \
            (self.params.sigma_0 ** 2) * np.ones((data1.shape[0], data2.shape[0]))

    ## def set_hyperparameters(self, hyperparameter):
    ##     if hyperparameter < 0:
    ##         raise InvalidHyperparameterError()
    ##     self.sigma_0 = hyperparameter
    ##     return

    def compute_lml_gradient(self, alphaalphaT_Kinv, data):
        K_grad_sigma_0 = 2*self.params.sigma_0
        # self.lml_gradient = 0.5*(np.trace(np.dot(alphaalphaT_Kinv,K_grad_sigma_0*np.ones(alphaalphaT_Kinv.shape)))
        # Faster formula: np.trace(np.dot(A,B)) = (A*(B.T)).sum()
        # Fastest when B is a constant: B*A.sum()
        self.lml_gradient = 0.5*np.array(K_grad_sigma_0*alphaalphaT_Kinv.sum())
        #return self.lml_gradient

    def compute_lml_gradient_logscale(self, alphaalphaT_Kinv, data):
        K_grad_sigma_0 = 2*self.params.sigma_0**2
        self.lml_gradient = 0.5*np.array(K_grad_sigma_0*alphaalphaT_Kinv.sum())
        #return self.lml_gradient
    pass


class GeneralizedLinearKernel(NumpyKernel):
    """The linear kernel class.
    """

    sigma_0 = Parameter(1.0,
                        doc="""
       A simple constant squared value which is broadcasted across
       kernel. In the case of GPR -- standard deviation of the Gaussian
       prior probability Normal(0, sigma_0**2) of the intercept of the
       linear regression.""")

    Sigma_p = Parameter(1.0,
                        doc=r"""
       A generic scalar or vector, or diagonal matrix to scale all
       dimensions or associate different scaling to each dimensions
       while computing te kernel matrix:
       :math:`k(x_A,x_B) = x_A^\top \Sigma_p x_B + \sigma_0^2`.
       In the case of GPR -- a scalar or a diagonal of covariance matrix
       of the Gaussian prior probability Normal(0, Sigma_p) on the weights
       of the linear regression.""")

    gradients = ConditionalAttribute(enabled=False,
        doc="Dictionary of gradients per a parameter")

    gradientslog = ConditionalAttribute(enabled=False,
        doc="Dictionary of gradients per a parameter in logspace")

    def __init__(self, *args, **kwargs):
        # for docstring holder
        NumpyKernel.__init__(self, *args, **kwargs)

    ## def __init__(self, Sigma_p=None, sigma_0=1.0, **kwargs):
    ##     """Initialize the linear kernel instance.

    ##     Parameters
    ##     ----------
    ##     Sigma_p : numpy.ndarray
    ##       Covariance matrix of the Gaussian prior probability N(0,Sigma_p)
    ##       on the weights of the linear regression.
    ##       (Defaults to None)
    ##     sigma_0 : float
    ##       the standard deviation of the Gaussian prior N(0,sigma_0**2)
    ##       of the intercept of the linear regression.
    ##       (Deafults to 1.0)
    ##     """
    ##     # init base class first
    ##     NumpyKernel.__init__(self, **kwargs)

    ##     # TODO: figure out cleaner way... probably by using KernelParameters ;-)
    ##     self.Sigma_p = Sigma_p
    ##     self.sigma_0 = sigma_0


    ## def __repr__(self):
    ##     return "%s(Sigma_p=%s, sigma_0=%s)" \
    ##         % (self.__class__.__name__, str(self.Sigma_p), str(self.sigma_0))

    # XXX ??? would we reset correctly to the original value... model selection
    #     currently depends on this I believe
    def reset(self):
        super(GeneralizedLinearKernel, self).reset()
        self._Sigma_p = self._Sigma_p_orig


    def _compute(self, data1, data2):
        """Compute kernel matrix.
        """
        # it is better to use separate lines of computation, to don't
        # incure computation cost without need (otherwise
        # np.dot(self.Sigma_p, data2.T) can take forever for relatively
        # large number of features)

        Sigma_p = self.params.Sigma_p          # local binding
        sigma_0 = self.params.sigma_0

        #if scalar - scale second term appropriately
        if np.isscalar(Sigma_p):
            if Sigma_p == 1.0:
                data2_sc = data2.T
            else:
                data2_sc = Sigma_p * data2.T

        # if vector use it as diagonal matrix -- ie scale each row by
        # the given value
        elif len(Sigma_p.shape) == 1 and \
                 Sigma_p.shape[0] == data2.shape[1]:
            # which due to numpy broadcasting is the same as product
            # with scalar above
            data2_sc = (Sigma_p * data2).T
        # If (diagonal) or full-matrix -- full-featured and lengthy matrix
        # product
        elif len(Sigma_p.shape) == 2 and \
                 Sigma_p.shape[0] == Sigma_p.shape[1] == data2.shape[1]:
            # which due to numpy broadcasting is the same as product
            # with scalar above
            data2_sc = np.dot(Sigma_p, data2.T)
        else:
            raise ValueError, "Please provide Sigma_p as a scalar, vector, " \
                  "or square (diagonal) matrix."

        # XXX if Sigma_p is changed a warning should be issued!
        # XXX other cases of incorrect Sigma_p could be catched
        self._k = k = np.dot(data1, data2_sc) + sigma_0 ** 2

        # Compute gradients if any was requested
        do_g  = self.ca.is_enabled('gradients')
        do_gl = self.ca.is_enabled('gradientslog')
        if do_g or do_gl:
            if np.isscalar(Sigma_p):
                g_Sigma_p = np.dot(data1, data2.T)
                gl_Sigma_p = Sigma_p * g_Sigma_p
            else:
                nfeat = len(Sigma_p)
                gsize = (len(data1), len(data2), nfeat)
                if do_g:  g_Sigma_p = np.empty(gsize)
                if do_gl: gl_Sigma_p = np.empty(gsize)
                for i in xrange(nfeat):
                    outer = np.multiply.outer(data1[:, i], data2[:, i])
                    if do_g:  g_Sigma_p[:, :, i] = outer
                    if do_gl: gl_Sigma_p = Sigma_p[i] * outer
            if do_g:
                self.ca.gradients = dict(
                    sigma_0=2*sigma_0,
                    Sigma_p=g_Sigma_p)
            if do_gl:
                self.ca.gradientslog = dict(
                    sigma_0=2*sigma_0**2,
                    Sigma_p=gl_Sigma_p)
    pass


class ExponentialKernel(NumpyKernel):
    """The Exponential kernel class.

    Note that it can handle a length scale for each dimension for
    Automtic Relevance Determination.

    """

    length_scale = Parameter(1.0, allowedtype='float or ndarray', doc="""
        The characteristic length-scale (or length-scales) of the phenomenon
        under investigation.""")

    sigma_f = Parameter(1.0, allowedtype='float',
        doc="""Signal standard deviation.""")

    def __init__(self, *args, **kwargs):
        # for docstring holder
        NumpyKernel.__init__(self, *args, **kwargs)

    ## def __init__(self, length_scale=1.0, sigma_f = 1.0, **kwargs):
    ##     """Initialize an Exponential kernel instance.

    ##     Parameters
    ##     ----------
    ##     length_scale : float or numpy.ndarray
    ##       the characteristic length-scale (or length-scales) of the
    ##       phenomenon under investigation.
    ##       (Defaults to 1.0)
    ##     sigma_f : float
    ##       Signal standard deviation.
    ##       (Defaults to 1.0)
    ##     """
    ##     # init base class first
    ##     NumpyKernel.__init__(self, **kwargs)

    ##     self.length_scale = length_scale
    ##     self.sigma_f = sigma_f
    ##     self._k = None


    ## def __repr__(self):
    ##     return "%s(length_scale=%s, sigma_f=%s)" \
    ##       % (self.__class__.__name__, str(self.length_scale), str(self.sigma_f))

    def _compute(self, data1, data2):
        """Compute kernel matrix.

        Parameters
        ----------
        data1 : numpy.ndarray
          lhs data
        data2 : numpy.ndarray
          rhs data
        """
        params = self.params
        # XXX the following computation can be (maybe) made more
        # efficient since length_scale is squared and then
        # square-rooted uselessly.
        # Weighted euclidean distance matrix:
        self.wdm = np.sqrt(squared_euclidean_distance(
            data1, data2, weight=(params.length_scale**-2)))
        self._k = \
            params.sigma_f**2 * np.exp(-self.wdm)

    def gradient(self, data1, data2):
        """Compute gradient of the kernel matrix. A must for fast
        model selection with high-dimensional data.
        """
        raise NotImplementedError

    ## def set_hyperparameters(self, hyperparameter):
    ##     """Set hyperaparmeters from a vector.

    ##     Used by model selection.
    ##     """
    ##     if np.any(hyperparameter < 0):
    ##         raise InvalidHyperparameterError()
    ##     self.sigma_f = hyperparameter[0]
    ##     self.length_scale = hyperparameter[1:]
    ##     return

    def compute_lml_gradient(self,alphaalphaT_Kinv,data):
        """Compute grandient of the kernel and return the portion of
        log marginal likelihood gradient due to the kernel.
        Shorter formula. Allows vector of lengthscales (ARD)
        BUT THIS LAST OPTION SEEMS NOT TO WORK FOR (CURRENTLY)
        UNKNOWN REASONS.
        """
        self.lml_gradient = []
        def lml_grad(K_grad_i):
            # return np.trace(np.dot(alphaalphaT_Kinv,K_grad_i))
            # Faster formula: np.trace(np.dot(A,B)) = (A*(B.T)).sum()
            return (alphaalphaT_Kinv*(K_grad_i.T)).sum()
        grad_sigma_f = 2.0/self.sigma_f*self.kernel_matrix
        self.lml_gradient.append(lml_grad(grad_sigma_f))
        if np.isscalar(self.length_scale) or self.length_scale.size==1:
            # use the same length_scale for all dimensions:
            K_grad_l = self.wdm*self.kernel_matrix*(self.length_scale**-1)
            self.lml_gradient.append(lml_grad(K_grad_l))
        else:
            # use one length_scale for each dimension:
            for i in range(self.length_scale.size):
                K_grad_i = (self.length_scale[i]**-3)*(self.wdm**-1)*self.kernel_matrix*np.subtract.outer(data[:,i],data[:,i])**2
                self.lml_gradient.append(lml_grad(K_grad_i))
                pass
            pass
        self.lml_gradient = 0.5*np.array(self.lml_gradient)
        return self.lml_gradient

    def compute_lml_gradient_logscale(self,alphaalphaT_Kinv,data):
        """Compute grandient of the kernel and return the portion of
        log marginal likelihood gradient due to the kernel.
        Shorter formula. Allows vector of lengthscales (ARD).
        BUT THIS LAST OPTION SEEMS NOT TO WORK FOR (CURRENTLY)
        UNKNOWN REASONS.
        """
        self.lml_gradient = []
        def lml_grad(K_grad_i):
            # return np.trace(np.dot(alphaalphaT_Kinv,K_grad_i))
            # Faster formula: np.trace(np.dot(A,B)) = (A*(B.T)).sum()
            return (alphaalphaT_Kinv*(K_grad_i.T)).sum()
        grad_log_sigma_f = 2.0*self.kernel_matrix
        self.lml_gradient.append(lml_grad(grad_log_sigma_f))
        if np.isscalar(self.length_scale) or self.length_scale.size==1:
            # use the same length_scale for all dimensions:
            K_grad_l = self.wdm*self.kernel_matrix
            self.lml_gradient.append(lml_grad(K_grad_l))
        else:
            # use one length_scale for each dimension:
            for i in range(self.length_scale.size):
                K_grad_i = (self.length_scale[i]**-2)*(self.wdm**-1)*self.kernel_matrix*np.subtract.outer(data[:,i],data[:,i])**2
                self.lml_gradient.append(lml_grad(K_grad_i))
                pass
            pass
        self.lml_gradient = 0.5*np.array(self.lml_gradient)
        return self.lml_gradient

    pass


class SquaredExponentialKernel(NumpyKernel):
    """The Squared Exponential kernel class.

    Note that it can handle a length scale for each dimension for
    Automtic Relevance Determination.

    """
    def __init__(self, length_scale=1.0, sigma_f=1.0, **kwargs):
        """Initialize a Squared Exponential kernel instance.

        Parameters
        ----------
        length_scale : float or numpy.ndarray, optional
          the characteristic length-scale (or length-scales) of the
          phenomenon under investigation.
          (Defaults to 1.0)
        sigma_f : float, optional
          Signal standard deviation.
          (Defaults to 1.0)
        """
        # init base class first
        NumpyKernel.__init__(self, **kwargs)

        self.length_scale = length_scale
        self.sigma_f = sigma_f

    # XXX ??? 
    def reset(self):
        super(SquaredExponentialKernel, self).reset()
        self._length_scale = self._length_scale_orig


    def __repr__(self):
        return "%s(length_scale=%s, sigma_f=%s)" \
          % (self.__class__.__name__, str(self.length_scale), str(self.sigma_f))

    def _compute(self, data1, data2):
        """Compute kernel matrix.

        Parameters
        ----------
        data1 : numpy.ndarray
          data
        data2 : numpy.ndarray
          data
          (Defaults to None)
        """
        # weighted squared euclidean distance matrix:
        self.wdm2 = squared_euclidean_distance(data1, data2, weight=(self.length_scale**-2))
        self._k = self.sigma_f**2 * np.exp(-0.5*self.wdm2)
        # XXX EO: old implementation:
        # self.kernel_matrix = \
        #     self.sigma_f * np.exp(-squared_euclidean_distance(
        #         data1, data2, weight=0.5 / (self.length_scale ** 2)))

    def set_hyperparameters(self, hyperparameter):
        """Set hyperaparmeters from a vector.

        Used by model selection.
        """
        if np.any(hyperparameter < 0):
            raise InvalidHyperparameterError()
        self.sigma_f = hyperparameter[0]
        self._length_scale = hyperparameter[1:]
        return

    def compute_lml_gradient(self,alphaalphaT_Kinv,data):
        """Compute grandient of the kernel and return the portion of
        log marginal likelihood gradient due to the kernel.
        Shorter formula. Allows vector of lengthscales (ARD).
        """
        self.lml_gradient = []
        def lml_grad(K_grad_i):
            # return np.trace(np.dot(alphaalphaT_Kinv,K_grad_i))
            # Faster formula: np.trace(np.dot(A,B)) = (A*(B.T)).sum()
            return (alphaalphaT_Kinv*(K_grad_i.T)).sum()
        grad_sigma_f = 2.0/self.sigma_f*self.kernel_matrix
        self.lml_gradient.append(lml_grad(grad_sigma_f))
        if np.isscalar(self.length_scale) or self.length_scale.size==1:
            # use the same length_scale for all dimensions:
            K_grad_l = self.wdm2*self.kernel_matrix*(1.0/self.length_scale)
            self.lml_gradient.append(lml_grad(K_grad_l))
        else:
            # use one length_scale for each dimension:
            for i in range(self.length_scale.size):
                K_grad_i = 1.0/(self.length_scale[i]**3)*self.kernel_matrix*np.subtract.outer(data[:,i],data[:,i])**2
                self.lml_gradient.append(lml_grad(K_grad_i))
                pass
            pass
        self.lml_gradient = 0.5*np.array(self.lml_gradient)
        return self.lml_gradient

    def compute_lml_gradient_logscale(self,alphaalphaT_Kinv,data):
        """Compute grandient of the kernel and return the portion of
        log marginal likelihood gradient due to the kernel.
        Hyperparameters are in log scale which is sometimes more
        stable. Shorter formula. Allows vector of lengthscales (ARD).
        """
        self.lml_gradient = []
        def lml_grad(K_grad_i):
            # return np.trace(np.dot(alphaalphaT_Kinv,K_grad_i))
            # Faster formula: np.trace(np.dot(A,B)) = (A*(B.T)).sum()
            return (alphaalphaT_Kinv*(K_grad_i.T)).sum()
        K_grad_log_sigma_f = 2.0*self.kernel_matrix
        self.lml_gradient.append(lml_grad(K_grad_log_sigma_f))
        if np.isscalar(self.length_scale) or self.length_scale.size==1:
            # use the same length_scale for all dimensions:
            K_grad_log_l = self.wdm2*self.kernel_matrix
            self.lml_gradient.append(lml_grad(K_grad_log_l))
        else:
            # use one length_scale for each dimension:
            for i in range(self.length_scale.size):
                K_grad_log_l_i = 1.0/(self.length_scale[i]**2)*self.kernel_matrix*np.subtract.outer(data[:,i],data[:,i])**2
                self.lml_gradient.append(lml_grad(K_grad_log_l_i))
                pass
            pass
        self.lml_gradient = 0.5*np.array(self.lml_gradient)
        return self.lml_gradient

    def _setlength_scale(self, v):
        """Set value of length_scale and its _orig
        """
        self._length_scale = self._length_scale_orig = v

    length_scale = property(fget=lambda x:x._length_scale,
                            fset=_setlength_scale)
    pass

class Matern_3_2Kernel(NumpyKernel):
    """The Matern kernel class for the case ni=3/2 or ni=5/2.

    Note that it can handle a length scale for each dimension for
    Automtic Relevance Determination.

    """
    def __init__(self, length_scale=1.0, sigma_f=1.0, numerator=3.0, **kwargs):
        """Initialize a Squared Exponential kernel instance.

        Parameters
        ----------
        length_scale : float or numpy.ndarray, optional
          the characteristic length-scale (or length-scales) of the
          phenomenon under investigation.
          (Defaults to 1.0)
        sigma_f : float, optional
          Signal standard deviation.
          (Defaults to 1.0)
        numerator : float, optional
          the numerator of parameter ni of Matern covariance functions.
          Currently only numerator=3.0 and numerator=5.0 are implemented.
          (Defaults to 3.0)
        """
        # init base class first
        NumpyKernel.__init__(self, **kwargs)

        self.length_scale = length_scale
        self.sigma_f = sigma_f
        if numerator == 3.0 or numerator == 5.0:
            self.numerator = numerator
        else:
            raise NotImplementedError

    def __repr__(self):
        return "%s(length_scale=%s, ni=%d/2)" \
            % (self.__class__.__name__, str(self.length_scale), self.numerator)

    def _compute(self, data1, data2):
        """Compute kernel matrix.

        Parameters
        ----------
        data1 : numpy.ndarray
          lhs data
        data2 : numpy.ndarray
          rhs data
        """
        tmp = squared_euclidean_distance(
                data1, data2, weight=0.5 / (self.length_scale ** 2))
        if self.numerator == 3.0:
            tmp = np.sqrt(tmp)
            self._k = \
                self.sigma_f**2 * (1.0 + np.sqrt(3.0) * tmp) \
                * np.exp(-np.sqrt(3.0) * tmp)
        elif self.numerator == 5.0:
            tmp2 = np.sqrt(tmp)
            self._k = \
                self.sigma_f**2 * (1.0 + np.sqrt(5.0) * tmp2 + 5.0 / 3.0 * tmp) \
                * np.exp(-np.sqrt(5.0) * tmp2)


    def gradient(self, data1, data2):
        """Compute gradient of the kernel matrix. A must for fast
        model selection with high-dimensional data.
        """
        # TODO SOON
        # grad = ...
        # return grad
        raise NotImplementedError

    def set_hyperparameters(self, hyperparameter):
        """Set hyperaparmeters from a vector.

        Used by model selection.
        Note: 'numerator' is not considered as an hyperparameter.
        """
        if np.any(hyperparameter < 0):
            raise InvalidHyperparameterError()
        self.sigma_f = hyperparameter[0]
        self.length_scale = hyperparameter[1:]
        return

    pass


class Matern_5_2Kernel(Matern_3_2Kernel):
    """The Matern kernel class for the case ni=5/2.

    This kernel is just Matern_3_2Kernel(numerator=5.0).
    """
    def __init__(self, **kwargs):
        """Initialize a Squared Exponential kernel instance.

        Parameters
        ----------
        length_scale : float or numpy.ndarray
          the characteristic length-scale (or length-scales) of the
          phenomenon under investigation.
          (Defaults to 1.0)
        """
        Matern_3_2Kernel.__init__(self, numerator=5.0, **kwargs)
        pass


class RationalQuadraticKernel(NumpyKernel):
    """The Rational Quadratic (RQ) kernel class.

    Note that it can handle a length scale for each dimension for
    Automtic Relevance Determination.

    """
    def __init__(self, length_scale=1.0, sigma_f=1.0, alpha=0.5, **kwargs):
        """Initialize a Squared Exponential kernel instance.

        Parameters
        ----------
        length_scale : float or numpy.ndarray
          the characteristic length-scale (or length-scales) of the
          phenomenon under investigation.
          (Defaults to 1.0)
        sigma_f : float
          Signal standard deviation.
          (Defaults to 1.0)
        alpha : float
          The parameter of the RQ functions family.
          (Defaults to 2.0)
        """
        # init base class first
        NumpyKernel.__init__(self, **kwargs)

        self.length_scale = length_scale
        self.sigma_f = sigma_f
        self.alpha = alpha

    def __repr__(self):
        return "%s(length_scale=%s, alpha=%f)" \
            % (self.__class__.__name__, str(self.length_scale), self.alpha)

    def _compute(self, data1, data2):
        """Compute kernel matrix.

        Parameters
        ----------
        data1 : numpy.ndarray
          lhs data
        data2 : numpy.ndarray
          rhs data
        """
        tmp = squared_euclidean_distance(
                data1, data2, weight=1.0 / (self.length_scale ** 2))
        self._k = \
            self.sigma_f**2 * (1.0 + tmp / (2.0 * self.alpha)) ** -self.alpha

    def gradient(self, data1, data2):
        """Compute gradient of the kernel matrix. A must for fast
        model selection with high-dimensional data.
        """
        # TODO SOON
        # grad = ...
        # return grad
        raise NotImplementedError

    def set_hyperparameters(self, hyperparameter):
        """Set hyperaparmeters from a vector.

        Used by model selection.
        Note: 'alpha' is not considered as an hyperparameter.
        """
        if np.any(hyperparameter < 0):
            raise InvalidHyperparameterError()
        self.sigma_f = hyperparameter[0]
        self.length_scale = hyperparameter[1:]
        return

    pass


# dictionary of avalable kernels with names as keys:
kernel_dictionary = {'constant': ConstantKernel,
                     'linear': LinearKernel, #GeneralizedLinearKernel,
                     'genlinear': GeneralizedLinearKernel,
                     'poly': PolyKernel,
                     'rbf': RbfKernel,
                     'exponential': ExponentialKernel,
                     'squared exponential': SquaredExponentialKernel,
                     'Matern ni=3/2': Matern_3_2Kernel,
                     'Matern ni=5/2': Matern_5_2Kernel,
                     'rational quadratic': RationalQuadraticKernel}