/usr/share/pyshared/mvpa2/kernels/np.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# Copyright (c) 2008 Emanuele Olivetti <emanuele@relativita.com> and
# PyMVPA Team. See COPYING file distributed along with the PyMVPA
# package for complete list of copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Kernels for Gaussian Process Regression and Classification."""
_DEV__DOC__ = """
Make use of Parameter Collections to keep parameters of the
kernels. Then we would get a uniform .reset() functionality. Now reset
is provided just for parts which are failing in the unittests, but
there is many more places where they are not reset properly if
classifier gets trained on some new data of different dimensionality
"""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.base.state import ConditionalAttribute
from mvpa2.base.param import Parameter
from mvpa2.misc.exceptions import InvalidHyperparameterError
from mvpa2.clfs.distance import squared_euclidean_distance
from mvpa2.kernels.base import NumpyKernel
if __debug__:
from mvpa2.base import debug, warning
# Simple stuff
class LinearKernel(NumpyKernel):
"""Simple linear kernel: K(a,b) = a*b.T"""
def _compute(self, d1, d2):
self._k = np.dot(d1, d2.T)
class PolyKernel(NumpyKernel):
"""Polynomial kernel: K(a,b) = (gamma*a*b.T+coef0)**degree"""
gamma = Parameter(1, doc='Gamma scaling coefficient')
degree = Parameter(2, doc="Polynomial degree")
coef0 = Parameter(1, doc="Offset added to dot product before exponent")
def _compute(self, d1, d2):
self._k = np.power(self.params.gamma*np.dot(d1, d2.T)+self.params.coef0,
self.params.degree)
class RbfKernel(NumpyKernel):
"""Radial basis function (aka Gausian, aka ) kernel
K(a,b) = exp(-||a-b||**2/sigma)
"""
sigma = Parameter(1.0, allowedtype=float, doc="Width parameter sigma")
def _compute(self, d1, d2):
# Do the Rbf
self._k = np.exp(-squared_euclidean_distance(d1,d2) / self.params.sigma)
# More complex
class ConstantKernel(NumpyKernel):
"""The constant kernel class.
"""
sigma_0 = Parameter(1.0,
doc="""
A simple constant squared value of which is broadcasted across
kernel. In the case of GPR -- standard deviation of the Gaussian
prior probability N(0,sigma_0**2) of the intercept of the
constant regression.""")
def _compute(self, data1, data2):
"""Compute kernel matrix.
Parameters
----------
data1 : numpy.ndarray
lhs data
data2 : numpy.ndarray
rhs data
"""
self._k = \
(self.params.sigma_0 ** 2) * np.ones((data1.shape[0], data2.shape[0]))
## def set_hyperparameters(self, hyperparameter):
## if hyperparameter < 0:
## raise InvalidHyperparameterError()
## self.sigma_0 = hyperparameter
## return
def compute_lml_gradient(self, alphaalphaT_Kinv, data):
K_grad_sigma_0 = 2*self.params.sigma_0
# self.lml_gradient = 0.5*(np.trace(np.dot(alphaalphaT_Kinv,K_grad_sigma_0*np.ones(alphaalphaT_Kinv.shape)))
# Faster formula: np.trace(np.dot(A,B)) = (A*(B.T)).sum()
# Fastest when B is a constant: B*A.sum()
self.lml_gradient = 0.5*np.array(K_grad_sigma_0*alphaalphaT_Kinv.sum())
#return self.lml_gradient
def compute_lml_gradient_logscale(self, alphaalphaT_Kinv, data):
K_grad_sigma_0 = 2*self.params.sigma_0**2
self.lml_gradient = 0.5*np.array(K_grad_sigma_0*alphaalphaT_Kinv.sum())
#return self.lml_gradient
pass
class GeneralizedLinearKernel(NumpyKernel):
"""The linear kernel class.
"""
sigma_0 = Parameter(1.0,
doc="""
A simple constant squared value which is broadcasted across
kernel. In the case of GPR -- standard deviation of the Gaussian
prior probability Normal(0, sigma_0**2) of the intercept of the
linear regression.""")
Sigma_p = Parameter(1.0,
doc=r"""
A generic scalar or vector, or diagonal matrix to scale all
dimensions or associate different scaling to each dimensions
while computing te kernel matrix:
:math:`k(x_A,x_B) = x_A^\top \Sigma_p x_B + \sigma_0^2`.
In the case of GPR -- a scalar or a diagonal of covariance matrix
of the Gaussian prior probability Normal(0, Sigma_p) on the weights
of the linear regression.""")
gradients = ConditionalAttribute(enabled=False,
doc="Dictionary of gradients per a parameter")
gradientslog = ConditionalAttribute(enabled=False,
doc="Dictionary of gradients per a parameter in logspace")
def __init__(self, *args, **kwargs):
# for docstring holder
NumpyKernel.__init__(self, *args, **kwargs)
## def __init__(self, Sigma_p=None, sigma_0=1.0, **kwargs):
## """Initialize the linear kernel instance.
## Parameters
## ----------
## Sigma_p : numpy.ndarray
## Covariance matrix of the Gaussian prior probability N(0,Sigma_p)
## on the weights of the linear regression.
## (Defaults to None)
## sigma_0 : float
## the standard deviation of the Gaussian prior N(0,sigma_0**2)
## of the intercept of the linear regression.
## (Deafults to 1.0)
## """
## # init base class first
## NumpyKernel.__init__(self, **kwargs)
## # TODO: figure out cleaner way... probably by using KernelParameters ;-)
## self.Sigma_p = Sigma_p
## self.sigma_0 = sigma_0
## def __repr__(self):
## return "%s(Sigma_p=%s, sigma_0=%s)" \
## % (self.__class__.__name__, str(self.Sigma_p), str(self.sigma_0))
# XXX ??? would we reset correctly to the original value... model selection
# currently depends on this I believe
def reset(self):
super(GeneralizedLinearKernel, self).reset()
self._Sigma_p = self._Sigma_p_orig
def _compute(self, data1, data2):
"""Compute kernel matrix.
"""
# it is better to use separate lines of computation, to don't
# incure computation cost without need (otherwise
# np.dot(self.Sigma_p, data2.T) can take forever for relatively
# large number of features)
Sigma_p = self.params.Sigma_p # local binding
sigma_0 = self.params.sigma_0
#if scalar - scale second term appropriately
if np.isscalar(Sigma_p):
if Sigma_p == 1.0:
data2_sc = data2.T
else:
data2_sc = Sigma_p * data2.T
# if vector use it as diagonal matrix -- ie scale each row by
# the given value
elif len(Sigma_p.shape) == 1 and \
Sigma_p.shape[0] == data2.shape[1]:
# which due to numpy broadcasting is the same as product
# with scalar above
data2_sc = (Sigma_p * data2).T
# If (diagonal) or full-matrix -- full-featured and lengthy matrix
# product
elif len(Sigma_p.shape) == 2 and \
Sigma_p.shape[0] == Sigma_p.shape[1] == data2.shape[1]:
# which due to numpy broadcasting is the same as product
# with scalar above
data2_sc = np.dot(Sigma_p, data2.T)
else:
raise ValueError, "Please provide Sigma_p as a scalar, vector, " \
"or square (diagonal) matrix."
# XXX if Sigma_p is changed a warning should be issued!
# XXX other cases of incorrect Sigma_p could be catched
self._k = k = np.dot(data1, data2_sc) + sigma_0 ** 2
# Compute gradients if any was requested
do_g = self.ca.is_enabled('gradients')
do_gl = self.ca.is_enabled('gradientslog')
if do_g or do_gl:
if np.isscalar(Sigma_p):
g_Sigma_p = np.dot(data1, data2.T)
gl_Sigma_p = Sigma_p * g_Sigma_p
else:
nfeat = len(Sigma_p)
gsize = (len(data1), len(data2), nfeat)
if do_g: g_Sigma_p = np.empty(gsize)
if do_gl: gl_Sigma_p = np.empty(gsize)
for i in xrange(nfeat):
outer = np.multiply.outer(data1[:, i], data2[:, i])
if do_g: g_Sigma_p[:, :, i] = outer
if do_gl: gl_Sigma_p = Sigma_p[i] * outer
if do_g:
self.ca.gradients = dict(
sigma_0=2*sigma_0,
Sigma_p=g_Sigma_p)
if do_gl:
self.ca.gradientslog = dict(
sigma_0=2*sigma_0**2,
Sigma_p=gl_Sigma_p)
pass
class ExponentialKernel(NumpyKernel):
"""The Exponential kernel class.
Note that it can handle a length scale for each dimension for
Automtic Relevance Determination.
"""
length_scale = Parameter(1.0, allowedtype='float or ndarray', doc="""
The characteristic length-scale (or length-scales) of the phenomenon
under investigation.""")
sigma_f = Parameter(1.0, allowedtype='float',
doc="""Signal standard deviation.""")
def __init__(self, *args, **kwargs):
# for docstring holder
NumpyKernel.__init__(self, *args, **kwargs)
## def __init__(self, length_scale=1.0, sigma_f = 1.0, **kwargs):
## """Initialize an Exponential kernel instance.
## Parameters
## ----------
## length_scale : float or numpy.ndarray
## the characteristic length-scale (or length-scales) of the
## phenomenon under investigation.
## (Defaults to 1.0)
## sigma_f : float
## Signal standard deviation.
## (Defaults to 1.0)
## """
## # init base class first
## NumpyKernel.__init__(self, **kwargs)
## self.length_scale = length_scale
## self.sigma_f = sigma_f
## self._k = None
## def __repr__(self):
## return "%s(length_scale=%s, sigma_f=%s)" \
## % (self.__class__.__name__, str(self.length_scale), str(self.sigma_f))
def _compute(self, data1, data2):
"""Compute kernel matrix.
Parameters
----------
data1 : numpy.ndarray
lhs data
data2 : numpy.ndarray
rhs data
"""
params = self.params
# XXX the following computation can be (maybe) made more
# efficient since length_scale is squared and then
# square-rooted uselessly.
# Weighted euclidean distance matrix:
self.wdm = np.sqrt(squared_euclidean_distance(
data1, data2, weight=(params.length_scale**-2)))
self._k = \
params.sigma_f**2 * np.exp(-self.wdm)
def gradient(self, data1, data2):
"""Compute gradient of the kernel matrix. A must for fast
model selection with high-dimensional data.
"""
raise NotImplementedError
## def set_hyperparameters(self, hyperparameter):
## """Set hyperaparmeters from a vector.
## Used by model selection.
## """
## if np.any(hyperparameter < 0):
## raise InvalidHyperparameterError()
## self.sigma_f = hyperparameter[0]
## self.length_scale = hyperparameter[1:]
## return
def compute_lml_gradient(self,alphaalphaT_Kinv,data):
"""Compute grandient of the kernel and return the portion of
log marginal likelihood gradient due to the kernel.
Shorter formula. Allows vector of lengthscales (ARD)
BUT THIS LAST OPTION SEEMS NOT TO WORK FOR (CURRENTLY)
UNKNOWN REASONS.
"""
self.lml_gradient = []
def lml_grad(K_grad_i):
# return np.trace(np.dot(alphaalphaT_Kinv,K_grad_i))
# Faster formula: np.trace(np.dot(A,B)) = (A*(B.T)).sum()
return (alphaalphaT_Kinv*(K_grad_i.T)).sum()
grad_sigma_f = 2.0/self.sigma_f*self.kernel_matrix
self.lml_gradient.append(lml_grad(grad_sigma_f))
if np.isscalar(self.length_scale) or self.length_scale.size==1:
# use the same length_scale for all dimensions:
K_grad_l = self.wdm*self.kernel_matrix*(self.length_scale**-1)
self.lml_gradient.append(lml_grad(K_grad_l))
else:
# use one length_scale for each dimension:
for i in range(self.length_scale.size):
K_grad_i = (self.length_scale[i]**-3)*(self.wdm**-1)*self.kernel_matrix*np.subtract.outer(data[:,i],data[:,i])**2
self.lml_gradient.append(lml_grad(K_grad_i))
pass
pass
self.lml_gradient = 0.5*np.array(self.lml_gradient)
return self.lml_gradient
def compute_lml_gradient_logscale(self,alphaalphaT_Kinv,data):
"""Compute grandient of the kernel and return the portion of
log marginal likelihood gradient due to the kernel.
Shorter formula. Allows vector of lengthscales (ARD).
BUT THIS LAST OPTION SEEMS NOT TO WORK FOR (CURRENTLY)
UNKNOWN REASONS.
"""
self.lml_gradient = []
def lml_grad(K_grad_i):
# return np.trace(np.dot(alphaalphaT_Kinv,K_grad_i))
# Faster formula: np.trace(np.dot(A,B)) = (A*(B.T)).sum()
return (alphaalphaT_Kinv*(K_grad_i.T)).sum()
grad_log_sigma_f = 2.0*self.kernel_matrix
self.lml_gradient.append(lml_grad(grad_log_sigma_f))
if np.isscalar(self.length_scale) or self.length_scale.size==1:
# use the same length_scale for all dimensions:
K_grad_l = self.wdm*self.kernel_matrix
self.lml_gradient.append(lml_grad(K_grad_l))
else:
# use one length_scale for each dimension:
for i in range(self.length_scale.size):
K_grad_i = (self.length_scale[i]**-2)*(self.wdm**-1)*self.kernel_matrix*np.subtract.outer(data[:,i],data[:,i])**2
self.lml_gradient.append(lml_grad(K_grad_i))
pass
pass
self.lml_gradient = 0.5*np.array(self.lml_gradient)
return self.lml_gradient
pass
class SquaredExponentialKernel(NumpyKernel):
"""The Squared Exponential kernel class.
Note that it can handle a length scale for each dimension for
Automtic Relevance Determination.
"""
def __init__(self, length_scale=1.0, sigma_f=1.0, **kwargs):
"""Initialize a Squared Exponential kernel instance.
Parameters
----------
length_scale : float or numpy.ndarray, optional
the characteristic length-scale (or length-scales) of the
phenomenon under investigation.
(Defaults to 1.0)
sigma_f : float, optional
Signal standard deviation.
(Defaults to 1.0)
"""
# init base class first
NumpyKernel.__init__(self, **kwargs)
self.length_scale = length_scale
self.sigma_f = sigma_f
# XXX ???
def reset(self):
super(SquaredExponentialKernel, self).reset()
self._length_scale = self._length_scale_orig
def __repr__(self):
return "%s(length_scale=%s, sigma_f=%s)" \
% (self.__class__.__name__, str(self.length_scale), str(self.sigma_f))
def _compute(self, data1, data2):
"""Compute kernel matrix.
Parameters
----------
data1 : numpy.ndarray
data
data2 : numpy.ndarray
data
(Defaults to None)
"""
# weighted squared euclidean distance matrix:
self.wdm2 = squared_euclidean_distance(data1, data2, weight=(self.length_scale**-2))
self._k = self.sigma_f**2 * np.exp(-0.5*self.wdm2)
# XXX EO: old implementation:
# self.kernel_matrix = \
# self.sigma_f * np.exp(-squared_euclidean_distance(
# data1, data2, weight=0.5 / (self.length_scale ** 2)))
def set_hyperparameters(self, hyperparameter):
"""Set hyperaparmeters from a vector.
Used by model selection.
"""
if np.any(hyperparameter < 0):
raise InvalidHyperparameterError()
self.sigma_f = hyperparameter[0]
self._length_scale = hyperparameter[1:]
return
def compute_lml_gradient(self,alphaalphaT_Kinv,data):
"""Compute grandient of the kernel and return the portion of
log marginal likelihood gradient due to the kernel.
Shorter formula. Allows vector of lengthscales (ARD).
"""
self.lml_gradient = []
def lml_grad(K_grad_i):
# return np.trace(np.dot(alphaalphaT_Kinv,K_grad_i))
# Faster formula: np.trace(np.dot(A,B)) = (A*(B.T)).sum()
return (alphaalphaT_Kinv*(K_grad_i.T)).sum()
grad_sigma_f = 2.0/self.sigma_f*self.kernel_matrix
self.lml_gradient.append(lml_grad(grad_sigma_f))
if np.isscalar(self.length_scale) or self.length_scale.size==1:
# use the same length_scale for all dimensions:
K_grad_l = self.wdm2*self.kernel_matrix*(1.0/self.length_scale)
self.lml_gradient.append(lml_grad(K_grad_l))
else:
# use one length_scale for each dimension:
for i in range(self.length_scale.size):
K_grad_i = 1.0/(self.length_scale[i]**3)*self.kernel_matrix*np.subtract.outer(data[:,i],data[:,i])**2
self.lml_gradient.append(lml_grad(K_grad_i))
pass
pass
self.lml_gradient = 0.5*np.array(self.lml_gradient)
return self.lml_gradient
def compute_lml_gradient_logscale(self,alphaalphaT_Kinv,data):
"""Compute grandient of the kernel and return the portion of
log marginal likelihood gradient due to the kernel.
Hyperparameters are in log scale which is sometimes more
stable. Shorter formula. Allows vector of lengthscales (ARD).
"""
self.lml_gradient = []
def lml_grad(K_grad_i):
# return np.trace(np.dot(alphaalphaT_Kinv,K_grad_i))
# Faster formula: np.trace(np.dot(A,B)) = (A*(B.T)).sum()
return (alphaalphaT_Kinv*(K_grad_i.T)).sum()
K_grad_log_sigma_f = 2.0*self.kernel_matrix
self.lml_gradient.append(lml_grad(K_grad_log_sigma_f))
if np.isscalar(self.length_scale) or self.length_scale.size==1:
# use the same length_scale for all dimensions:
K_grad_log_l = self.wdm2*self.kernel_matrix
self.lml_gradient.append(lml_grad(K_grad_log_l))
else:
# use one length_scale for each dimension:
for i in range(self.length_scale.size):
K_grad_log_l_i = 1.0/(self.length_scale[i]**2)*self.kernel_matrix*np.subtract.outer(data[:,i],data[:,i])**2
self.lml_gradient.append(lml_grad(K_grad_log_l_i))
pass
pass
self.lml_gradient = 0.5*np.array(self.lml_gradient)
return self.lml_gradient
def _setlength_scale(self, v):
"""Set value of length_scale and its _orig
"""
self._length_scale = self._length_scale_orig = v
length_scale = property(fget=lambda x:x._length_scale,
fset=_setlength_scale)
pass
class Matern_3_2Kernel(NumpyKernel):
"""The Matern kernel class for the case ni=3/2 or ni=5/2.
Note that it can handle a length scale for each dimension for
Automtic Relevance Determination.
"""
def __init__(self, length_scale=1.0, sigma_f=1.0, numerator=3.0, **kwargs):
"""Initialize a Squared Exponential kernel instance.
Parameters
----------
length_scale : float or numpy.ndarray, optional
the characteristic length-scale (or length-scales) of the
phenomenon under investigation.
(Defaults to 1.0)
sigma_f : float, optional
Signal standard deviation.
(Defaults to 1.0)
numerator : float, optional
the numerator of parameter ni of Matern covariance functions.
Currently only numerator=3.0 and numerator=5.0 are implemented.
(Defaults to 3.0)
"""
# init base class first
NumpyKernel.__init__(self, **kwargs)
self.length_scale = length_scale
self.sigma_f = sigma_f
if numerator == 3.0 or numerator == 5.0:
self.numerator = numerator
else:
raise NotImplementedError
def __repr__(self):
return "%s(length_scale=%s, ni=%d/2)" \
% (self.__class__.__name__, str(self.length_scale), self.numerator)
def _compute(self, data1, data2):
"""Compute kernel matrix.
Parameters
----------
data1 : numpy.ndarray
lhs data
data2 : numpy.ndarray
rhs data
"""
tmp = squared_euclidean_distance(
data1, data2, weight=0.5 / (self.length_scale ** 2))
if self.numerator == 3.0:
tmp = np.sqrt(tmp)
self._k = \
self.sigma_f**2 * (1.0 + np.sqrt(3.0) * tmp) \
* np.exp(-np.sqrt(3.0) * tmp)
elif self.numerator == 5.0:
tmp2 = np.sqrt(tmp)
self._k = \
self.sigma_f**2 * (1.0 + np.sqrt(5.0) * tmp2 + 5.0 / 3.0 * tmp) \
* np.exp(-np.sqrt(5.0) * tmp2)
def gradient(self, data1, data2):
"""Compute gradient of the kernel matrix. A must for fast
model selection with high-dimensional data.
"""
# TODO SOON
# grad = ...
# return grad
raise NotImplementedError
def set_hyperparameters(self, hyperparameter):
"""Set hyperaparmeters from a vector.
Used by model selection.
Note: 'numerator' is not considered as an hyperparameter.
"""
if np.any(hyperparameter < 0):
raise InvalidHyperparameterError()
self.sigma_f = hyperparameter[0]
self.length_scale = hyperparameter[1:]
return
pass
class Matern_5_2Kernel(Matern_3_2Kernel):
"""The Matern kernel class for the case ni=5/2.
This kernel is just Matern_3_2Kernel(numerator=5.0).
"""
def __init__(self, **kwargs):
"""Initialize a Squared Exponential kernel instance.
Parameters
----------
length_scale : float or numpy.ndarray
the characteristic length-scale (or length-scales) of the
phenomenon under investigation.
(Defaults to 1.0)
"""
Matern_3_2Kernel.__init__(self, numerator=5.0, **kwargs)
pass
class RationalQuadraticKernel(NumpyKernel):
"""The Rational Quadratic (RQ) kernel class.
Note that it can handle a length scale for each dimension for
Automtic Relevance Determination.
"""
def __init__(self, length_scale=1.0, sigma_f=1.0, alpha=0.5, **kwargs):
"""Initialize a Squared Exponential kernel instance.
Parameters
----------
length_scale : float or numpy.ndarray
the characteristic length-scale (or length-scales) of the
phenomenon under investigation.
(Defaults to 1.0)
sigma_f : float
Signal standard deviation.
(Defaults to 1.0)
alpha : float
The parameter of the RQ functions family.
(Defaults to 2.0)
"""
# init base class first
NumpyKernel.__init__(self, **kwargs)
self.length_scale = length_scale
self.sigma_f = sigma_f
self.alpha = alpha
def __repr__(self):
return "%s(length_scale=%s, alpha=%f)" \
% (self.__class__.__name__, str(self.length_scale), self.alpha)
def _compute(self, data1, data2):
"""Compute kernel matrix.
Parameters
----------
data1 : numpy.ndarray
lhs data
data2 : numpy.ndarray
rhs data
"""
tmp = squared_euclidean_distance(
data1, data2, weight=1.0 / (self.length_scale ** 2))
self._k = \
self.sigma_f**2 * (1.0 + tmp / (2.0 * self.alpha)) ** -self.alpha
def gradient(self, data1, data2):
"""Compute gradient of the kernel matrix. A must for fast
model selection with high-dimensional data.
"""
# TODO SOON
# grad = ...
# return grad
raise NotImplementedError
def set_hyperparameters(self, hyperparameter):
"""Set hyperaparmeters from a vector.
Used by model selection.
Note: 'alpha' is not considered as an hyperparameter.
"""
if np.any(hyperparameter < 0):
raise InvalidHyperparameterError()
self.sigma_f = hyperparameter[0]
self.length_scale = hyperparameter[1:]
return
pass
# dictionary of avalable kernels with names as keys:
kernel_dictionary = {'constant': ConstantKernel,
'linear': LinearKernel, #GeneralizedLinearKernel,
'genlinear': GeneralizedLinearKernel,
'poly': PolyKernel,
'rbf': RbfKernel,
'exponential': ExponentialKernel,
'squared exponential': SquaredExponentialKernel,
'Matern ni=3/2': Matern_3_2Kernel,
'Matern ni=5/2': Matern_5_2Kernel,
'rational quadratic': RationalQuadraticKernel}
|