This file is indexed.

/usr/share/pyshared/mvpa2/featsel/helpers.py is in python-mvpa2 2.2.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
""""""

__docformat__ = 'restructuredtext'

from math import floor
import numpy as np

from mvpa2.base.dataset import AttrDataset
from mvpa2.base.state import ClassWithCollections, ConditionalAttribute

if __debug__:
    from mvpa2.base import debug

#
# Functors to be used for FeatureSelection
#

class BestDetector(object):
    """Determine whether the last value in a sequence is the best one given
    some criterion.
    """
    def __init__(self, func=min, lastminimum=False):
        """Initialize with number of steps

        Parameters
        ----------
        fun : functor
          Functor to select the best results. Defaults to min
        lastminimum : bool
          Toggle whether the latest or the earliest minimum is used as
          optimal value to determine the stopping criterion.
        """
        self.__func = func
        self.__lastminimum = lastminimum
        self.__bestindex = None
        """Stores the index of the last detected best value."""


    def __call__(self, errors):
        """Returns True if the last value in `errors` is the best or False
        otherwise.
        """
        isbest = False

        # just to prevent ValueError
        if len(errors)==0:
            return isbest

        minerror = self.__func(errors)

        if self.__lastminimum:
            # make sure it is an array
            errors = np.array(errors)
            # to find out the location of the minimum but starting from the
            # end!
            minindex = np.array((errors == minerror).nonzero()).max()
        else:
            minindex = errors.index(minerror)

        self.__bestindex = minindex

        # if minimal is the last one reported -- it is the best
        if minindex == len(errors)-1:
            isbest = True

        return isbest

    bestindex = property(fget=lambda self:self.__bestindex)



class StoppingCriterion(object):
    """Base class for all functors to decide when to stop RFE (or may
    be general optimization... so it probably will be moved out into
    some other module
    """

    def __call__(self, errors):
        """Instruct when to stop.

        Every implementation should return `False` when an empty list is
        passed as argument.

        Returns tuple `stop`.
        """
        raise NotImplementedError



class MultiStopCrit(StoppingCriterion):
    """Stop computation if the latest error drops below a certain threshold.
    """
    def __init__(self, crits, mode='or'):
        """
        Parameters
        ----------
        crits : list of StoppingCriterion instances
          For each call to MultiStopCrit all of these criterions will
          be evaluated.
        mode : {'and', 'or'}
          Logical function to determine the multi criterion from the set
          of base criteria.
        """
        if not mode in ('and', 'or'):
            raise ValueError, \
                  "A mode %r is not supported." % (mode, )

        self.__mode = mode
        self.__crits = crits


    def __call__(self, errors):
        """Evaluate all criteria to determine the value of the multi criterion.
        """
        # evaluate all crits
        crits = [ c(errors) for c in self.__crits ]

        if self.__mode == 'and':
            return np.all(crits)
        else:
            return np.any(crits)



class FixedErrorThresholdStopCrit(StoppingCriterion):
    """Stop computation if the latest error drops below a certain threshold.
    """
    def __init__(self, threshold):
        """Initialize with threshold.

        Parameters
        ----------
          threshold : float [0,1]
              Error threshold.
        """
        StoppingCriterion.__init__(self)
        if threshold > 1.0 or threshold < 0.0:
            raise ValueError, \
                  "Threshold %f is out of a reasonable range [0,1]." \
                    % threshold
        self.__threshold = threshold


    def __call__(self, errors):
        """Nothing special."""
        if len(errors)==0:
            return False
        if errors[-1] < self.__threshold:
            return True
        else:
            return False


    threshold = property(fget=lambda x:x.__threshold)



class NStepsStopCrit(StoppingCriterion):
    """Stop computation after a certain number of steps.
    """
    def __init__(self, steps):
        """Initialize with number of steps.

        Parameters
        ----------
        steps : int
          Number of steps after which to stop.
        """
        StoppingCriterion.__init__(self)
        if steps < 0:
            raise ValueError, \
                  "Number of steps %i is out of a reasonable range." \
                    % steps
        self.__steps = steps


    def __call__(self, errors):
        """Nothing special."""
        if len(errors) >= self.__steps:
            return True
        else:
            return False


    steps = property(fget=lambda x:x.__steps)



class NBackHistoryStopCrit(StoppingCriterion):
    """Stop computation if for a number of steps error was increasing
    """

    def __init__(self, bestdetector=BestDetector(), steps=10):
        """Initialize with number of steps

        Parameters
        ----------
        bestdetector : BestDetector
          used to determine where the best error is located.
        steps : int
          How many steps to check after optimal value.
        """
        StoppingCriterion.__init__(self)
        if steps < 0:
            raise ValueError, \
                  "Number of steps (got %d) should be non-negative" % steps
        self.__bestdetector = bestdetector
        self.__steps = steps


    def __call__(self, errors):
        stop = False

        # just to prevent ValueError
        if len(errors)==0:
            return stop

        # charge best detector
        self.__bestdetector(errors)

        # if number of elements after the min >= len -- stop
        if len(errors) - self.__bestdetector.bestindex > self.__steps:
            stop = True

        return stop

    steps = property(fget=lambda x:x.__steps)



class ElementSelector(ClassWithCollections):
    """Base class to implement functors to select some elements based on a
    sequence of values.
    """

    ndiscarded = ConditionalAttribute(enabled=True,
        doc="Store number of discarded elements.")

    def __init__(self, mode='discard', **kwargs):
        """
        Parameters
        ----------
         mode : {'discard', 'select'}
            Decides whether to `select` or to `discard` features.
        """
        ClassWithCollections.__init__(self, **kwargs)

        self._set_mode(mode)
        """Flag whether to select or to discard elements."""


    ##REF: Name was automagically refactored
    def _set_mode(self, mode):
        """Choose `select` or `discard` mode."""

        if not mode in ['discard', 'select']:
            raise ValueError, "Unkown selection mode [%s]. Can only be one " \
                              "of 'select' or 'discard'." % mode

        self.__mode = mode


    def __call__(self, seq):
        """
        Parameters
        ----------
        seq
           Sequence based on values of which to perform the selection.
           If `Dataset`, then only 1st sample is taken.
        """
        if isinstance(seq, AttrDataset):
            if len(seq)>1:
                raise ValueError(
                    "Feature selectors cannot handle multiple "
                    "sequences in a Dataset at once.  We got dataset %s "
                    "as input."
                    % (seq,))
            seq = seq.samples[0]
        elif hasattr(seq, 'shape'):
            shape = seq.shape
            if len(shape) > 1:
                raise ValueError(
                    "Feature selectors cannot handle multidimensional "
                    "inputs (such as ndarrays with more than a single "
                    "dimension.  We got %s with shape %s "
                    "as input." % (seq.__class__, shape))
        return self._call(seq)

    def _call(self, seq):
        """Implementations in derived classed have to return a list of selected
        element IDs based on the given sequence.
        """
        raise NotImplementedError

    mode = property(fget=lambda self:self.__mode, fset=_set_mode)


class RangeElementSelector(ElementSelector):
    """Select elements based on specified range of values"""

    def __init__(self, lower=None, upper=None, inclusive=False,
                 mode='select', **kwargs):
        """Initialization `RangeElementSelector`

        Parameters
        ----------
         lower
           If not None -- select elements which are above of
           specified value
         upper
           If not None -- select elements which are lower of
           specified value
         inclusive
           Either to include end points
         mode
           overrides parent's default to be 'select' since it is more
           native for RangeElementSelector
           XXX TODO -- unify??

        `upper` could be lower than `lower` -- then selection is done
        on values <= lower or >=upper (ie tails). This would produce
        the same result if called with flipped values for mode and
        inclusive.

        If no upper no lower is set, assuming upper,lower=0, thus
        outputing non-0 elements
        """

        if lower is None and upper is None:
            lower, upper = 0, 0
            """Lets better return non-0 values if none of bounds is set"""

        # init State before registering anything
        ElementSelector.__init__(self, mode=mode, **kwargs)

        self.__range = (lower, upper)
        """Values on which to base selection"""

        self.__inclusive = inclusive

    def _call(self, seq):
        """Returns selected IDs.
        """
        lower, upper = self.__range
        len_seq = len(seq)
        if not lower is None:
            if self.__inclusive:
                selected = seq >= lower
            else:
                selected = seq > lower
        else:
            selected = np.ones( (len_seq), dtype=np.bool )

        if not upper is None:
            if self.__inclusive:
                selected_upper = seq <= upper
            else:
                selected_upper = seq < upper
            if not lower is None:
                if lower < upper:
                    # regular range
                    selected = np.logical_and(selected, selected_upper)
                else:
                    # outside, though that would be similar to exclude
                    selected = np.logical_or(selected, selected_upper)
            else:
                selected = selected_upper

        if self.mode == 'discard':
            selected = np.logical_not(selected)

        result = np.where(selected)[0]

        if __debug__:
            debug("ES", "Selected %d out of %d elements" %
                  (len(result), len_seq))
        return result


class TailSelector(ElementSelector):
    """Select elements from a tail of a distribution.

    The default behaviour is to discard the lower tail of a given distribution.
    """

    # TODO: 'both' to select from both tails
    def __init__(self, tail='lower', sort=True, **kwargs):
        """Initialize TailSelector

        Parameters
        ----------
         tail : ['lower', 'upper']
            Choose the tail to be processed.
         sort : bool
            Flag whether selected IDs will be sorted. Disable if not
            necessary to save some CPU cycles.

        """
        # init State before registering anything
        ElementSelector.__init__(self, **kwargs)

        self._set_tail(tail)
        """Know which tail to select."""

        self.__sort = sort


    ##REF: Name was automagically refactored
    def _set_tail(self, tail):
        """Set the tail to be processed."""
        if not tail in ['lower', 'upper']:
            raise ValueError, "Unkown tail argument [%s]. Can only be one " \
                              "of 'lower' or 'upper'." % tail

        self.__tail = tail


    ##REF: Name was automagically refactored
    def _get_n_elements(self, seq):
        """In derived classes has to return the number of elements to be
        processed given a sequence values forming the distribution.
        """
        raise NotImplementedError


    def _call(self, seq):
        """Returns selected IDs.
        """
        # TODO: Think about selecting features which have equal values but
        #       some are selected and some are not
        len_seq = len(seq)
        # how many to select (cannot select more than available)
        nelements = min(self._get_n_elements(seq), len_seq)

        # make sure that data is ndarray and compute a sequence rank matrix
        # lowest value is first
        seqrank = np.array(seq).argsort()

        if self.mode == 'discard' and self.__tail == 'upper':
            good_ids = seqrank[:-1*nelements]
            self.ca.ndiscarded = nelements
        elif self.mode == 'discard' and self.__tail == 'lower':
            good_ids = seqrank[nelements:]
            self.ca.ndiscarded = nelements
        elif self.mode == 'select' and self.__tail == 'upper':
            good_ids = seqrank[-1*nelements:]
            self.ca.ndiscarded = len_seq - nelements
        else: # select lower tail
            good_ids = seqrank[:nelements]
            self.ca.ndiscarded = len_seq - nelements

        # sort ids to keep order
        # XXX should we do here are leave to other place
        if self.__sort:
            good_ids.sort()

        # only return proper slice args: this is a list of int ids, hence return
        # a list not an array
        return list(good_ids)



class FixedNElementTailSelector(TailSelector):
    """Given a sequence, provide set of IDs for a fixed number of to be selected
    elements.
    """

    def __init__(self, nelements, **kwargs):
        """
        Parameters
        ----------
        nelements : int
          Number of elements to select/discard.
        """
        TailSelector.__init__(self, **kwargs)
        self.__nelements = None
        self._set_n_elements(nelements)


    def __repr__(self):
        return "%s number=%f" % (
            TailSelector.__repr__(self), self.nelements)


    ##REF: Name was automagically refactored
    def _get_n_elements(self, seq):
        return self.__nelements


    ##REF: Name was automagically refactored
    def _set_n_elements(self, nelements):
        if __debug__:
            if nelements <= 0:
                raise ValueError, "Number of elements less or equal to zero " \
                                  "does not make sense."

        self.__nelements = nelements


    nelements = property(fget=lambda x:x.__nelements,
                         fset=_set_n_elements)



class FractionTailSelector(TailSelector):
    """Given a sequence, provide Ids for a fraction of elements
    """

    def __init__(self, felements, **kwargs):
        """
        Parameters
        ----------
         felements : float (0,1.0]
            Fraction of elements to select/discard. Note: Even when 0.0 is
            specified at least one element will be selected.
        """
        TailSelector.__init__(self, **kwargs)
        self._set_f_elements(felements)


    def __repr__(self):
        return "%s fraction=%f" % (
            TailSelector.__repr__(self), self.__felements)


    ##REF: Name was automagically refactored
    def _get_n_elements(self, seq):
        num = int(floor(self.__felements * len(seq)))
        num = max(1, num)               # remove at least 1
        # no need for checks as base class will do anyway
        #return min(num, nselect)
        return num


    ##REF: Name was automagically refactored
    def _set_f_elements(self, felements):
        """What fraction to discard"""
        if felements > 1.0 or felements < 0.0:
            raise ValueError, \
                  "Fraction (%f) cannot be outside of [0.0,1.0]" \
                  % felements

        self.__felements = felements


    felements = property(fget=lambda x:x.__felements,
                         fset=_set_f_elements)