/usr/share/pyshared/mvpa2/featsel/base.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Feature selection base class and related stuff base classes and helpers."""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.featsel.helpers import FractionTailSelector, \
NBackHistoryStopCrit, \
BestDetector
from mvpa2.mappers.slicing import SliceMapper
from mvpa2.mappers.base import accepts_dataset_as_samples
from mvpa2.base.dochelpers import _repr_attrs
from mvpa2.base.state import ConditionalAttribute
from mvpa2.generators.splitters import mask2slice
if __debug__:
from mvpa2.base import debug
class FeatureSelection(SliceMapper):
"""Mapper to select a subset of features.
Depending on the actual slicing two FeatureSelections can be merged in a
number of ways: incremental selection (+=), union (&=) and intersection
(|=). Were the former assumes that two feature selections are applied
subsequently, and the latter two assume that both slicings operate on the
set of input features.
Examples
--------
>>> from mvpa2.datasets import *
>>> ds = Dataset([[1,2,3,4,5]])
>>> fs0 = StaticFeatureSelection([0,1,2,3])
>>> fs0(ds).samples
array([[1, 2, 3, 4]])
Merge two incremental selections: the resulting mapper performs a selection
that is equivalent to first applying one slicing and subsequently the next
slicing. In this scenario the slicing argument of the second mapper is
relative to the output feature space of the first mapper.
>>> fs1 = StaticFeatureSelection([0,2])
>>> fs0 += fs1
>>> fs0(ds).samples
array([[1, 3]])
"""
def __init__(self, filler=0, **kwargs):
"""
Parameters
----------
filler : optional
Value to fill empty entries upon reverse operation
"""
# init slicearg with None
SliceMapper.__init__(self, None, **kwargs)
self._dshape = None
self._oshape = None
self.filler = filler
def __repr__(self, prefixes=[]):
return super(FeatureSelection, self).__repr__(
prefixes=prefixes
+ _repr_attrs(self, ['filler'], default=0))
def _forward_data(self, data):
"""Map data from the original dataspace into featurespace.
Parameters
----------
data : array-like
Either one-dimensional sample or two-dimensional samples matrix.
"""
mdata = data[:, self._slicearg]
# store the output shape if not set yet
if self._oshape is None:
self._oshape = mdata.shape[1:]
return mdata
def _forward_dataset(self, dataset):
# XXX this should probably not affect the source dataset, but right now
# init_origid is not flexible enough
if not self.get_space() is None:
# TODO need to do a copy first!!!
dataset.init_origids('features', attr=self.get_space())
# invoke super class _forward_dataset, this calls, _forward_dataset
# and this calles _forward_data in this class
mds = super(FeatureSelection, self)._forward_dataset(dataset)
# attribute collection needs to have a new length check
mds.fa.set_length_check(mds.nfeatures)
# now slice all feature attributes
for k in mds.fa:
mds.fa[k] = self.forward1(mds.fa[k].value)
return mds
def reverse1(self, data):
# we need to reject inappropriate "single" samples to allow
# chainmapper to properly switch to reverse() for multiple samples
# use the fact that a single sample needs to conform to the known
# data shape -- but may have additional appended dimensions
if not data.shape[:len(self._oshape)] == self._oshape:
raise ValueError("Data shape does not match training "
"(trained: %s; got: %s)"
% (self._dshape, data.shape))
return super(FeatureSelection, self).reverse1(data)
def _reverse_data(self, data):
"""Reverse map data from featurespace into the original dataspace.
Parameters
----------
data : array-like
Either one-dimensional sample or two-dimensional samples matrix.
"""
if self._dshape is None:
raise RuntimeError(
"Cannot reverse-map data since the original data shape is "
"unknown. Either set `dshape` in the constructor, or call "
"train().")
# this wouldn't preserve ndarray subclasses
#mapped = np.zeros(data.shape[:1] + self._dshape,
# dtype=data.dtype)
# let's do it a little awkward but pass subclasses through
# suggestions for improvements welcome
mapped = data.copy() # make sure we own the array data
# "guess" the shape of the final array, the following only supports
# changes in the second axis -- the feature axis
# this madness is necessary to support mapping of multi-dimensional
# features
mapped.resize(data.shape[:1] + self._dshape + data.shape[2:],
refcheck=False)
mapped.fill(self.filler)
mapped[:, self._slicearg] = data
return mapped
def _reverse_dataset(self, dataset):
# invoke super class _reverse_dataset, this calls, _reverse_dataset
# and this calles _reverse_data in this class
mds = super(FeatureSelection, self)._reverse_dataset(dataset)
# attribute collection needs to have a new length check
mds.fa.set_length_check(mds.nfeatures)
# now reverse all feature attributes
for k in mds.fa:
mds.fa[k] = self.reverse1(mds.fa[k].value)
return mds
@accepts_dataset_as_samples
def _train(self, data):
if self._dshape is None:
# XXX what about arrays of generic objects???
# MH: in this case the shape will be (), which is just
# fine since feature slicing is meaningless without features
# the only thing we can do is kill the whole samples matrix
self._dshape = data.shape[1:]
# we also need to know what the output shape looks like
# otherwise we cannot reliably say what is appropriate input
# for reverse*()
self._oshape = data[:, self._slicearg].shape[1:]
def _untrain(self):
if __debug__:
debug("FS_", "Untraining FS: %s" % self)
self._dshape = None
self._oshape = None
super(SliceMapper, self)._untrain()
class StaticFeatureSelection(FeatureSelection):
"""Feature selection by static slicing argument.
"""
def __init__(self, slicearg, dshape=None, oshape=None, **kwargs):
"""
Parameters
----------
slicearg : int, list(int), array(int), array(bool)
Any slicing argument that is compatible with numpy arrays. Depending
on the argument the mapper will perform basic slicing or
advanced indexing (with all consequences on speed and memory
consumption).
dshape : tuple
Preseed the mappers input data shape (single sample shape).
oshape: tuple
Preseed the mappers output data shape (single sample shape).
"""
FeatureSelection.__init__(self, **kwargs)
# store it here, might be modified later
self._dshape = self.__orig_dshape = dshape
self._oshape = self.__orig_oshape = oshape
# we also want to store the original slicearg to be able to reset to it
# during training. Derived classes will override this default
# implementation of _train()
self.__orig_slicearg = slicearg
self._safe_assign_slicearg(slicearg)
def __repr__(self, prefixes=[]):
return super(FeatureSelection, self).__repr__(
prefixes=prefixes
+ _repr_attrs(self, ['dshape', 'oshape']))
@accepts_dataset_as_samples
def _train(self, ds):
# first thing is to reset the slicearg to the original value passed to
# the constructor
self._safe_assign_slicearg(self.__orig_slicearg)
# not resetting {d,o}shape here as they will be handled upstream
# and perform base training
super(StaticFeatureSelection, self)._train(ds)
def _untrain(self):
# make trained again immediately
self._safe_assign_slicearg(self.__orig_slicearg)
self._dshape = self.__orig_dshape
self._oshape = self.__orig_oshape
super(FeatureSelection, self)._untrain()
dshape = property(fget=lambda self: self.__orig_dshape)
oshape = property(fget=lambda self: self.__orig_oshape)
class SensitivityBasedFeatureSelection(FeatureSelection):
"""Feature elimination.
A `FeaturewiseMeasure` is used to compute sensitivity maps given a certain
dataset. These sensitivity maps are in turn used to discard unimportant
features.
"""
sensitivity = ConditionalAttribute(enabled=False)
def __init__(self,
sensitivity_analyzer,
feature_selector=FractionTailSelector(0.05),
train_analyzer=True,
**kwargs
):
"""Initialize feature selection
Parameters
----------
sensitivity_analyzer : FeaturewiseMeasure
sensitivity analyzer to come up with sensitivity
feature_selector : Functor
Given a sensitivity map it has to return the ids of those
features that should be kept.
train_analyzer : bool
Flag whether to train the sensitivity analyzer on the input dataset
during train(). If False, the employed sensitivity measure has to be
already trained before.
"""
# base init first
FeatureSelection.__init__(self, **kwargs)
self.__sensitivity_analyzer = sensitivity_analyzer
"""Sensitivity analyzer to use once"""
self.__feature_selector = feature_selector
"""Functor which takes care about removing some features."""
self.__train_analyzer = train_analyzer
def _train(self, dataset):
"""Select the most important features
Parameters
----------
dataset : Dataset
used to compute sensitivity maps
"""
# optionally train the analyzer first
if self.__train_analyzer:
self.__sensitivity_analyzer.train(dataset)
sensitivity = self.__sensitivity_analyzer(dataset)
"""Compute the sensitivity map."""
self.ca.sensitivity = sensitivity
# Select features to preserve
selected_ids = self.__feature_selector(sensitivity)
if __debug__:
debug("FS_", "Sensitivity: %s Selected ids: %s" %
(sensitivity, selected_ids))
# XXX not sure if it really has to be sorted
selected_ids.sort()
# announce desired features to the underlying slice mapper
self._safe_assign_slicearg(selected_ids)
# and perform its own training
super(SensitivityBasedFeatureSelection, self)._train(dataset)
def _untrain(self):
if __debug__:
debug("FS_", "Untraining sensitivity-based FS: %s" % self)
self.__sensitivity_analyzer.untrain()
# ask base class to do its untrain
super(SensitivityBasedFeatureSelection, self)._untrain()
# make it accessible from outside
sensitivity_analyzer = property(fget=lambda self:self.__sensitivity_analyzer,
doc="Measure which was used to do selection")
class IterativeFeatureSelection(FeatureSelection):
"""
"""
errors = ConditionalAttribute(
doc="History of errors")
nfeatures = ConditionalAttribute(
doc="History of # of features left")
def __init__(self,
fmeasure,
pmeasure,
splitter,
fselector,
stopping_criterion=NBackHistoryStopCrit(BestDetector()),
bestdetector=BestDetector(),
train_pmeasure=True,
# XXX should we may be guard splitter so we do not end up
# with inappropriate one for the use, i.e. which
# generates more than 2 splits
# guard_splitter=True,
**kwargs
):
"""
Parameters
----------
fmeasure : Measure
Computed for each candidate feature selection. The measure has
to compute a scalar value.
pmeasure : Measure
Compute against a test dataset for each incremental feature
set.
splitter: Splitter
This splitter instance has to generate at least one dataset split
when called with the input dataset that is used to compute the
per-feature criterion for feature selection.
bestdetector : Functor
Given a list of error values it has to return a boolean that
signals whether the latest error value is the total minimum.
stopping_criterion : Functor
Given a list of error values it has to return whether the
criterion is fulfilled.
fselector : Functor
train_clf : bool
Flag whether the classifier in `transfer_error` should be
trained before computing the error. In general this is
required, but if the `sensitivity_analyzer` and
`transfer_error` share and make use of the same classifier it
can be switched off to save CPU cycles. Default `None` checks
if sensitivity_analyzer is based on a classifier and doesn't train
if so.
"""
# bases init first
FeatureSelection.__init__(self, **kwargs)
self._fmeasure = fmeasure
self._pmeasure = pmeasure
self._splitter = splitter
self._fselector = fselector
self._stopping_criterion = stopping_criterion
self._bestdetector = bestdetector
self._train_pmeasure = train_pmeasure
def _untrain(self):
if __debug__:
debug("FS_", "Untraining Iterative FS: %s" % self)
self._fmeasure.untrain()
self._pmeasure.untrain()
# ask base class to do its untrain
super(IterativeFeatureSelection, self)._untrain()
def _evaluate_pmeasure(self, train, test):
# local binding
pmeasure = self._pmeasure
# might safe some cycles to prevent training the measure, but only
# the user can know whether this is sensible or possible
if self._train_pmeasure:
pmeasure.train(train)
# actually run the performance measure to estimate "quality" of
# selection
return pmeasure(test)
def _get_traintest_ds(self, ds):
# activate the dataset splitter
dsgen = self._splitter.generate(ds)
# and derived the dataset part that is used for computing the selection
# criterion
trainds = dsgen.next()
testds = dsgen.next()
return trainds, testds
# access properties
fmeasure = property(fget=lambda self: self._fmeasure)
pmeasure = property(fget=lambda self: self._pmeasure)
splitter = property(fget=lambda self: self._splitter)
fselector = property(fget=lambda self: self._fselector)
stopping_criterion = property(fget=lambda self: self._stopping_criterion)
bestdetector = property(fget=lambda self: self._bestdetector)
train_pmeasure = property(fget=lambda self: self._train_pmeasure)
class CombinedFeatureSelection(FeatureSelection):
"""Meta feature selection utilizing several embedded selection methods.
During training each embedded feature selection method is computed
individually. Afterwards all feature sets are combined by either taking the
union or intersection of all sets.
"""
def __init__(self, selectors, method, **kwargs):
"""
Parameters
----------
selectors : list
FeatureSelection instances to run. Order is not important.
method : {'union', 'intersection'}
which method to be used to combine the feature selection set of
all computed methods.
"""
# by default -- auto_train
kwargs['auto_train'] = kwargs.get('auto_train', True)
FeatureSelection.__init__(self, **kwargs)
self.__selectors = selectors
self.__method = method
def _untrain(self):
if __debug__:
debug("FS_", "Untraining combined FS: %s" % self)
for fs in self.__selectors:
fs.untrain()
# ask base class to do its untrain
super(CombinedFeatureSelection, self)._untrain()
def _train(self, ds):
# local binding
method = self.__method
# two major modes
if method == 'union':
# slice mask default: take none
mask = np.zeros(ds.shape[1], dtype=np.bool)
# method: OR
cfunc = np.logical_or
elif method == 'intersection':
# slice mask default: take all
mask = np.ones(ds.shape[1], dtype=np.bool)
# method: AND
cfunc = np.logical_and
else:
raise ValueError("Unknown combining method '%s'" % method)
for fs in self.__selectors:
# first: train all embedded selections
fs.train(ds)
# now get boolean mask of selections
fsmask = np.zeros(mask.shape, dtype=np.bool)
# use slicearg to select features
fsmask[fs._slicearg] = True
# merge with current global mask
mask = cfunc(mask, fsmask)
# turn the derived boolean mask into a slice if possible
slicearg = mask2slice(mask)
# and assign to baseclass, done
self._safe_assign_slicearg(slicearg)
method = property(fget=lambda self: self.__method)
selectors = property(fget=lambda self: self.__selectors)
|