/usr/share/pyshared/mvpa2/datasets/eventrelated.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Dataset for event-related samples."""
__docformat__ = 'restructuredtext'
import copy
import numpy as np
from mvpa2.misc.support import Event, value2idx
from mvpa2.base.dataset import _expand_attribute
from mvpa2.mappers.fx import _uniquemerge2literal
from mvpa2.mappers.flatten import FlattenMapper
from mvpa2.mappers.boxcar import BoxcarMapper
from mvpa2.base import warning
def find_events(**kwargs):
"""Detect changes in multiple synchronous sequences.
Multiple sequence arguments are scanned for changes in the unique value
combination at corresponding locations. Each change in the combination is
taken as a new event onset. The length of an event is determined by the
number of identical consecutive combinations.
Parameters
----------
**kwargs : sequences
Arbitrary number of sequences that shall be scanned.
Returns
-------
list
Detected events, where each event is a dictionary with the unique
combination of values stored under their original name. In addition, the
dictionary also contains the ``onset`` of the event (as index in the
sequence), as well as the ``duration`` (as number of identical
consecutive items).
See Also
--------
eventrelated_dataset : event-related segmentation of a dataset
Examples
--------
>>> seq1 = ['one', 'one', 'two', 'two']
>>> seq2 = [1, 1, 1, 2]
>>> events = find_events(targets=seq1, chunks=seq2)
>>> for e in events:
... print e
{'chunks': 1, 'duration': 2, 'onset': 0, 'targets': 'one'}
{'chunks': 1, 'duration': 1, 'onset': 2, 'targets': 'two'}
{'chunks': 2, 'duration': 1, 'onset': 3, 'targets': 'two'}
"""
def _build_event(onset, duration, combo):
ev = Event(onset=onset, duration=duration, **combo)
return ev
events = []
prev_onset = 0
old_combo = None
duration = 1
# over all samples
for r in xrange(len(kwargs.values()[0])):
# current attribute combination
combo = dict([(k, v[r]) for k, v in kwargs.iteritems()])
# check if things changed
if not combo == old_combo:
# did we ever had an event
if not old_combo is None:
events.append(_build_event(prev_onset, duration, old_combo))
# reset duration for next event
duration = 1
# store the current samples as onset for the next event
prev_onset = r
# update the reference combination
old_combo = combo
else:
# current event is lasting
duration += 1
# push the last event in the pipeline
if not old_combo is None:
events.append(_build_event(prev_onset, duration, old_combo))
return events
def eventrelated_dataset(ds, events=None, time_attr=None, match='prev',
eprefix='event'):
"""Segment a dataset into a set of events.
This function can be used to extract event-related samples from any
time-series based dataset (actually, it don't have to be time series, but
could also be any other type of ordered samples). Boxcar-shaped event
samples, potentially spanning multiple input samples can be automatically
extracted using :class:`~mvpa2.misc.support.Event` definition lists. For
each event all samples covering that particular event are used to form the
corresponding sample.
An event definition is a dictionary that contains ``onset`` (as sample index
in the input dataset), ``duration`` (as number of consecutive samples after
the onset), as well as an arbitrary number of additional attributes.
Alternatively, ``onset`` and ``duration`` may also be given as real time
stamps (or durations). In this case a to be specified samples attribute in
the input dataset will be used to convert these into sample indices.
Parameters
----------
ds : Dataset
The samples of this input dataset have to be in whatever ascending order.
events : list
Each event definition has to specify ``onset`` and ``duration``. All other
attributes will be passed on to the sample attributes collection of the
returned dataset.
time_attr : str or None
If not None, the ``onset`` and ``duration`` specs from the event list will
be converted using information from this sample attribute. Its values will
be treated as in-the-same-unit and are used to determine corresponding
samples from real-value onset and duration definitions.
match : {'prev', 'next', 'closest'}
Strategy used to match real-value onsets to sample indices. 'prev' chooses
the closes preceding samples, 'next' the closest following sample and
'closest' to absolute closest sample.
eprefix : str or None
If not None, this prefix is used to name additional attributes generated
by the underlying `~mvpa2.mappers.boxcar.BoxcarMapper`. If it is set to
None, no additional attributes will be created.
Returns
-------
Dataset
The returned dataset has one sample per each event definition that has
been passed to the function.
Examples
--------
The documentation also contains an :ref:`example script
<example_eventrelated>` showing a spatio-temporal analysis of fMRI data
that involves this function.
>>> from mvpa2.datasets import Dataset
>>> ds = Dataset(np.random.randn(10, 25))
>>> events = [{'onset': 2, 'duration': 4},
... {'onset': 4, 'duration': 4}]
>>> eds = eventrelated_dataset(ds, events)
>>> len(eds)
2
>>> eds.nfeatures == ds.nfeatures * 4
True
>>> 'mapper' in ds.a
False
>>> print eds.a.mapper
<Chain: <Boxcar: bl=4>-<Flatten>>
And now the same conversion, but with events specified as real time. This is
on possible if the input dataset contains a sample attribute with the
necessary information about the input samples.
>>> ds.sa['record_time'] = np.linspace(0, 5, len(ds))
>>> rt_events = [{'onset': 1.05, 'duration': 2.2},
... {'onset': 2.3, 'duration': 2.12}]
>>> rt_eds = eventrelated_dataset(ds, rt_events, time_attr='record_time',
... match='closest')
>>> np.all(eds.samples == rt_eds.samples)
True
>>> # returned dataset e.g. has info from original samples
>>> rt_eds.sa.record_time
array([[ 1.11111111, 1.66666667, 2.22222222, 2.77777778],
[ 2.22222222, 2.77777778, 3.33333333, 3.88888889]])
"""
# relabel argument
conv_strategy = {'prev': 'floor',
'next': 'ceil',
'closest': 'round'}[match]
if not time_attr is None:
tvec = ds.sa[time_attr].value
# we are asked to convert onset time into sample ids
descr_events = []
for ev in events:
# do not mess with the input data
ev = copy.deepcopy(ev)
# best matching sample
idx = value2idx(ev['onset'], tvec, conv_strategy)
# store offset of sample time and real onset
ev['orig_offset'] = ev['onset'] - tvec[idx]
# rescue the real onset into a new attribute
ev['orig_onset'] = ev['onset']
ev['orig_duration'] = ev['duration']
# figure out how many samples we need
ev['duration'] = \
len(tvec[idx:][tvec[idx:] < ev['onset'] + ev['duration']])
# new onset is sample index
ev['onset'] = idx
descr_events.append(ev)
else:
descr_events = events
# convert the event specs into the format expected by BoxcarMapper
# take the first event as an example of contained keys
evvars = {}
for k in descr_events[0]:
try:
evvars[k] = [e[k] for e in descr_events]
except KeyError:
raise ValueError("Each event property must be present for all "
"events (could not find '%s')" % k)
# checks
for p in ['onset', 'duration']:
if not p in evvars:
raise ValueError("'%s' is a required property for all events."
% p)
boxlength = max(evvars['duration'])
if __debug__:
if not max(evvars['duration']) == min(evvars['duration']):
warning('Boxcar mapper will use maximum boxlength (%i) of all '
'provided Events.'% boxlength)
# finally create, train und use the boxcar mapper
bcm = BoxcarMapper(evvars['onset'], boxlength, space=eprefix)
bcm.train(ds)
ds = ds.get_mapped(bcm)
# at last reflatten the dataset
# could we add some meaningful attribute during this mapping, i.e. would
# assigning 'inspace' do something good?
ds = ds.get_mapped(FlattenMapper(shape=ds.samples.shape[1:]))
# add samples attributes for the events, simply dump everything as a samples
# attribute
for a in evvars:
if not eprefix is None and a in ds.sa:
# if there is already a samples attribute like this, it got mapped
# by BoxcarMapper (i.e. is multi-dimensional). We move it aside
# under new `eprefix` name
ds.sa[eprefix + '_' + a] = ds.sa[a]
if a in ['onset', 'duration']:
# special case: we want the non-discrete, original onset and
# duration
if not time_attr is None:
# but only if there was a conversion happining, since otherwise
# we get the same info from BoxcarMapper
ds.sa[a] = [e[a] for e in events]
else:
ds.sa[a] = evvars[a]
return ds
|