/usr/share/pyshared/mvpa2/datasets/eep.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Dataset that gets its samples from an EEP binary file"""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.datasets import Dataset
from mvpa2.misc.io import DataReader
def eep_dataset(samples, targets=None, chunks=None):
"""Create a dataset using an EEP binary file as source.
EEP files are used by *eeprobe* a software for analysing even-related
potentials (ERP), which was developed at the Max-Planck Institute for
Cognitive Neuroscience in Leipzig, Germany.
http://www.ant-neuro.com/products/eeprobe
Parameters
----------
samples : str or EEPBin instance
This is either a filename of an EEP file, or an EEPBin instance, providing
the samples data in EEP format.
targets, chunks : sequence or scalar or None
Values are pass through to `Dataset.from_wizard()`. See its documentation
for more information.
Returns
-------
Dataset
Besides is usual attributes (e.g. targets, chunks, and a mapper). The
returned dataset also includes feature attributes associating each same
with a channel (by id), and a specific timepoint -- based on information
read from the EEP data.
"""
if isinstance(samples, str):
# open the eep file
eb = EEPBin(samples)
elif isinstance(samples, EEPBin):
# nothing special
eb = samples
else:
raise ValueError("eep_dataset takes the filename of an "
"EEP file or a EEPBin object as 'samples' argument.")
# init dataset
ds = Dataset.from_channeltimeseries(
eb.data, targets=targets, chunks=chunks, t0=eb.t0, dt=eb.dt,
channelids=eb.channels)
return ds
class EEPBin(DataReader):
"""Read-access to binary EEP files.
EEP files are used by *eeprobe* a software for analysing even-related
potentials (ERP), which was developed at the Max-Planck Institute for
Cognitive Neuroscience in Leipzig, Germany.
http://www.ant-neuro.com/products/eeprobe
EEP files consist of a plain text header and a binary data block in a
single file. The header starts with a line of the form
';%d %d %d %g %g' % (Nchannels, Nsamples, Ntrials, t0, dt)
where Nchannels, Nsamples, Ntrials are the numbers of channels, samples
per trial and trials respectively. t0 is the time of the first sample
of a trial relative to the stimulus onset and dt is the sampling interval.
The binary data block consists of single precision floats arranged in the
following way::
<trial1,channel1,sample1>,<trial1,channel1,sample2>,...
<trial1,channel2,sample1>,<trial1,channel2,sample2>,...
.
<trial2,channel1,sample1>,<trial2,channel1,sample2>,...
<trial2,channel2,sample1>,<trial2,channel2,sample2>,...
"""
def __init__(self, source):
"""Read EEP file and store header and data.
Parameters
----------
source : str
Filename.
"""
# init base class
DataReader.__init__(self)
# temp storage of number of samples
nsamples = None
# non-critical header components stored in temp dict
hdr = {}
infile = open(source, "rb")
# read file the end of header of EOF
while True:
# one line at a time
try:
line = infile.readline().decode('ascii')
except UnicodeDecodeError:
break
# stop if EOH or EOF
if not line or line.startswith(';EOH;'):
break
# no crap!
line = line.strip()
# all but first line as colon
if not line.count(':'):
# top header
l = line.split()
# extract critical information
self._props['nchannels'] = int(l[0][1:])
self._props['ntimepoints'] = int(l[1])
self._props['t0'] = float(l[3])
self._props['dt'] = float(l[4])
nsamples = int(l[2])
else:
# simply store non-critical extras
l = line.split(':')
key = l[0].lstrip(';')
value = ':'.join(l[1:])
hdr[key] = value
# post process channel name info -> list
if hdr.has_key('channels'):
self._props['channels'] = hdr['channels'].split()
self._data = \
np.reshape(np.fromfile(infile, dtype='f'), \
(nsamples,
self._props['nchannels'],
self._props['ntimepoints']))
# cleanup
infile.close()
nchannels = property(fget=lambda self: self._props['nchannels'],
doc="Number of channels")
ntimepoints = property(fget=lambda self: self._props['ntimepoints'],
doc="Number of data timepoints")
nsamples = property(fget=lambda self: self._data.shape[0],
doc="Number of trials/samples")
t0 = property(fget=lambda self: self._props['t0'],
doc="Relative start time of sampling interval")
dt = property(fget=lambda self: self._props['dt'],
doc="Time difference between two adjacent samples")
channels = property(fget=lambda self: self._props['channels'],
doc="List of channel names")
|