This file is indexed.

/usr/share/pyshared/mvpa2/clfs/warehouse.py is in python-mvpa2 2.2.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Collection of classifiers to ease the exploration.
"""

__docformat__ = 'restructuredtext'

from mvpa2.base.types import is_sequence_type

# Define sets of classifiers
from mvpa2.clfs.meta import FeatureSelectionClassifier, SplitClassifier, \
     MulticlassClassifier, RegressionAsClassifier
from mvpa2.clfs.smlr import SMLR
from mvpa2.clfs.knn import kNN
from mvpa2.clfs.gda import LDA, QDA
from mvpa2.clfs.gnb import GNB
from mvpa2.kernels.np import LinearKernel, SquaredExponentialKernel, \
     GeneralizedLinearKernel

# Helpers
from mvpa2.base import externals, cfg
from mvpa2.measures.anova import OneWayAnova
from mvpa2.mappers.fx import absolute_features, maxofabs_sample
from mvpa2.clfs.smlr import SMLRWeights
from mvpa2.featsel.helpers import FractionTailSelector, \
    FixedNElementTailSelector, RangeElementSelector

from mvpa2.featsel.base import SensitivityBasedFeatureSelection

# Kernels
from mvpa2.kernels.libsvm import LinearLSKernel, RbfLSKernel, \
     PolyLSKernel, SigmoidLSKernel

_KNOWN_INTERNALS = [ 'knn', 'binary', 'svm', 'linear',
        'smlr', 'does_feature_selection', 'has_sensitivity',
        'multiclass', 'non-linear', 'kernel-based', 'lars',
        'regression', 'regression_based', 'random_tie_breaking',
        'non-deterministic', 'needs_population',
        'libsvm', 'sg', 'meta', 'retrainable', 'gpr',
        'notrain2predict', 'ridge', 'blr', 'gnpp', 'enet', 'glmnet',
        'gnb', 'plr', 'rpy2', 'swig', 'skl', 'lda', 'qda',
        'random-forest', 'extra-trees']

class Warehouse(object):
    """Class to keep known instantiated classifiers

    Should provide easy ways to select classifiers of needed kind:
    clfswh['linear', 'svm'] should return all linear SVMs
    clfswh['linear', 'multiclass'] should return all linear classifiers
    capable of doing multiclass classification
    """

    def __init__(self, known_tags=None, matches=None):
        """Initialize warehouse

        Parameters
        ----------
        known_tags : list of str
          List of known tags
        matches : dict
          Optional dictionary of additional matches. E.g. since any
          regression can be used as a binary classifier,
          matches={'binary':['regression']}, would allow to provide
          regressions also if 'binary' was requested
          """
        self._known_tags = set(known_tags)
        self.__items = []
        self.__keys = set()
        if matches is None:
            matches = {}
        self.__matches = matches

    def __getitem__(self, *args):
        if isinstance(args[0], tuple):
            args = args[0]

        # so we explicitely handle [:]
        if args == (slice(None),):
            args = []

        # lets remove optional modifier '!'
        dargs = set([str(x).lstrip('!') for x in args]).difference(
            self._known_tags)

        if len(dargs)>0:
            raise ValueError, "Unknown internals %s requested. Known are %s" % \
                  (list(dargs), list(self._known_tags))

        # dummy implementation for now
        result = []
        # check every known item
        for item in self.__items:
            good = True
            # by default each one counts
            for arg in args:
                # check for rejection first
                if arg.startswith('!'):
                    if (arg[1:] in item.__tags__):
                        good = False
                        break
                    else:
                        continue
                # check for inclusion
                found = False
                for arg in [arg] + self.__matches.get(arg, []):
                    if (arg in item.__tags__):
                        found = True
                        break
                good = found
                if not good:
                    break
            if good:
                result.append(item)
        return result

    def __iadd__(self, item):
        if is_sequence_type(item):
            for item_ in item:
                self.__iadd__(item_)
        else:
            if not hasattr(item, '__tags__'):
                raise ValueError, "Cannot register %s " % item + \
                      "which has no __tags__ defined"
            if len(item.__tags__) == 0:
                raise ValueError, "Cannot register %s " % item + \
                      "which has empty __tags__"
            clf_internals = set(item.__tags__)
            if clf_internals.issubset(self._known_tags):
                self.__items.append(item)
                self.__keys |= clf_internals
            else:
                raise ValueError, 'Unknown clf internal(s) %s' % \
                      clf_internals.difference(self._known_tags)
        return self

    @property
    def internals(self):
        """Known internal tags of the classifiers
        """
        return self.__keys

    def listing(self):
        """Listing (description + internals) of registered items
        """
        return [(x.descr, x.__tags__) for x in self.__items]

    @property
    def items(self):
        """Registered items
        """
        return self.__items

clfswh = Warehouse(known_tags=_KNOWN_INTERNALS) # classifiers
regrswh = Warehouse(known_tags=_KNOWN_INTERNALS) # regressions

# NB:
#  - Nu-classifiers are turned off since for haxby DS default nu
#    is an 'infisible' one
#  - Python's SMLR is turned off for the duration of development
#    since it is slow and results should be the same as of C version
#
clfswh += [ SMLR(lm=0.1, implementation="C", descr="SMLR(lm=0.1)"),
          SMLR(lm=1.0, implementation="C", descr="SMLR(lm=1.0)"),
          #SMLR(lm=10.0, implementation="C", descr="SMLR(lm=10.0)"),
          #SMLR(lm=100.0, implementation="C", descr="SMLR(lm=100.0)"),
          #SMLR(implementation="Python", descr="SMLR(Python)")
          ]

clfswh += \
     [ MulticlassClassifier(SMLR(lm=0.1),
                            descr='Pairs+maxvote multiclass on SMLR(lm=0.1)') ]

if externals.exists('libsvm'):
    from mvpa2.clfs.libsvmc import svm as libsvm
    clfswh._known_tags.update(libsvm.SVM._KNOWN_IMPLEMENTATIONS.keys())
    clfswh += [libsvm.SVM(descr="libsvm.LinSVM(C=def)", probability=1),
             libsvm.SVM(
                 C=-10.0, descr="libsvm.LinSVM(C=10*def)", probability=1),
             libsvm.SVM(
                 C=1.0, descr="libsvm.LinSVM(C=1)", probability=1),
             libsvm.SVM(svm_impl='NU_SVC',
                        descr="libsvm.LinNuSVM(nu=def)", probability=1)
             ]
    clfswh += [libsvm.SVM(kernel=RbfLSKernel(), descr="libsvm.RbfSVM()"),
             libsvm.SVM(kernel=RbfLSKernel(), svm_impl='NU_SVC',
                        descr="libsvm.RbfNuSVM(nu=def)"),
             libsvm.SVM(kernel=PolyLSKernel(),
                        descr='libsvm.PolySVM()', probability=1),
             #libsvm.svm.SVM(kernel=SigmoidLSKernel(),
             #               svm_impl='C_SVC',
             #               descr='libsvm.SigmoidSVM()'),
             ]

    # regressions
    regrswh._known_tags.update(['EPSILON_SVR', 'NU_SVR'])
    regrswh += [libsvm.SVM(svm_impl='EPSILON_SVR', descr='libsvm epsilon-SVR'),
                libsvm.SVM(svm_impl='NU_SVR', descr='libsvm nu-SVR')]

if externals.exists('shogun'):
    from mvpa2.clfs import sg
    
    from mvpa2.kernels.sg import LinearSGKernel, PolySGKernel, RbfSGKernel
    clfswh._known_tags.update(sg.SVM._KNOWN_IMPLEMENTATIONS)

    # TODO: some classifiers are not yet ready to be used out-of-the-box in
    # PyMVPA, thus we don't populate warehouse with their instances
    bad_classifiers = [
        'mpd',  # was segfault, now non-training on testcases, and XOR.
                # and was described as "for educational purposes", thus
                # shouldn't be used for real data ;-)
        # Should be a drop-in replacement for lightsvm
        'gpbt', # fails to train for testAnalyzerWithSplitClassifier
                # also 'retraining' doesn't work -- fails to generalize
        'gmnp', # would fail with 'assertion Cache_Size > 2'
                # if shogun < 0.6.3, also refuses to train
        'svrlight', # fails to 'generalize' as a binary classifier
                    # after 'binning'
        'krr', # fails to generalize
        'svmocas', # fails to generalize
        'libsvr'                        # XXXregr removing regressions as classifiers
        ]
    if not externals.exists('sg_fixedcachesize'):
        # would fail with 'assertion Cache_Size > 2' if shogun < 0.6.3
        bad_classifiers.append('gnpp')

    for impl in sg.SVM._KNOWN_IMPLEMENTATIONS:
        # Uncomment the ones to disable
        if impl in bad_classifiers:
            continue
        clfswh += [
            sg.SVM(
                descr="sg.LinSVM(C=def)/%s" % impl, svm_impl=impl),
            sg.SVM(
                C=-10.0, descr="sg.LinSVM(C=10*def)/%s" % impl, svm_impl=impl),
            sg.SVM(
                C=1.0, descr="sg.LinSVM(C=1)/%s" % impl, svm_impl=impl),
            ]
        if not impl in ['svmocas']:     # inherently linear only
            clfswh += [
                sg.SVM(kernel=RbfSGKernel(),
                       descr="sg.RbfSVM()/%s" % impl, svm_impl=impl),
    #            sg.SVM(kernel=RbfSGKernel(),
    #                   descr="sg.RbfSVM(gamma=0.1)/%s"
    #                    % impl, svm_impl=impl, gamma=0.1),
    #           sg.SVM(descr="sg.SigmoidSVM()/%s"
    #                   % impl, svm_impl=impl, kernel=SigmoidSGKernel(),),
                ]

    _optional_regressions = []
    if externals.exists('shogun.krr') and externals.versions['shogun'] >= '0.9':
        _optional_regressions += ['krr']
    for impl in ['libsvr'] + _optional_regressions:# \
        # XXX svrlight sucks in SG -- dont' have time to figure it out
        #+ ([], ['svrlight'])['svrlight' in sg.SVM._KNOWN_IMPLEMENTATIONS]:
        regrswh._known_tags.update([impl])
        regrswh += [ sg.SVM(svm_impl=impl, descr='sg.LinSVMR()/%s' % impl),
                   #sg.SVM(svm_impl=impl, kernel_type='RBF',
                   #       descr='sg.RBFSVMR()/%s' % impl),
                   ]

if len(clfswh['svm', 'linear']) > 0:
    # if any SVM implementation is known, import default ones
    from mvpa2.clfs.svm import *

# lars from R via RPy
if externals.exists('lars'):
    import mvpa2.clfs.lars as lars
    from mvpa2.clfs.lars import LARS
    for model in lars.known_models:
        # XXX create proper repository of classifiers!
        lars_clf = RegressionAsClassifier(
            LARS(descr="LARS(%s)" % model,
                 model_type=model),
            descr='LARS(model_type=%r) classifier' % model)
        clfswh += lars_clf

        # is a regression, too
        lars_regr = LARS(descr="_LARS(%s)" % model,
                         model_type=model)
        regrswh += lars_regr
        # clfswh += MulticlassClassifier(lars,
        #             descr='Multiclass %s' % lars.descr)

## Still fails unittests battery although overhauled otherwise.
## # enet from R via RPy2
## if externals.exists('elasticnet'):
##     from mvpa2.clfs.enet import ENET
##     clfswh += RegressionAsClassifier(ENET(),
##                                      descr="RegressionAsClassifier(ENET())")
##     regrswh += ENET(descr="ENET()")

# glmnet from R via RPy
if externals.exists('glmnet'):
    from mvpa2.clfs.glmnet import GLMNET_C, GLMNET_R
    clfswh += GLMNET_C(descr="GLMNET_C()")
    regrswh += GLMNET_R(descr="GLMNET_R()")

# LDA/QDA
clfswh += LDA(descr='LDA()')
clfswh += QDA(descr='QDA()')

if externals.exists('skl'):
    _skl_version = externals.versions['skl']
    _skl_api09 = _skl_version >= '0.9'
    def _skl_import(submod, class_):
        if _skl_api09:
            submod_ = __import__('sklearn.%s' % submod, fromlist=[submod])
        else:
            submod_ = __import__('scikits.learn.%s' % submod, fromlist=[submod])
        return getattr(submod_, class_)

    sklLDA = _skl_import('lda', 'LDA')
    from mvpa2.clfs.skl.base import SKLLearnerAdapter
    clfswh += SKLLearnerAdapter(sklLDA(),
                                tags=['lda', 'linear', 'multiclass', 'binary'],
                                descr='skl.LDA()')

    if _skl_version >= '0.10':
        # Out of Bag Estimates
        sklRandomForestClassifier = _skl_import('ensemble', 'RandomForestClassifier')
        clfswh += SKLLearnerAdapter(sklRandomForestClassifier(),
                                     tags=['random-forest', 'linear', 'non-linear',
                                           'binary', 'multiclass',
                                           'non-deterministic', 'needs_population',],
                                     descr='skl.RandomForestClassifier()')

        sklRandomForestRegression = _skl_import('ensemble', 'RandomForestRegressor')
        regrswh += SKLLearnerAdapter(sklRandomForestRegression(),
                                     tags=['random-forest', 'linear', 'non-linear',
                                           'regression',
                                           'non-deterministic', 'needs_population',],
                                     descr='skl.RandomForestRegression()')


        sklExtraTreesClassifier = _skl_import('ensemble', 'ExtraTreesClassifier')
        clfswh += SKLLearnerAdapter(sklExtraTreesClassifier(),
                                     tags=['extra-trees', 'linear', 'non-linear',
                                           'binary', 'multiclass',
                                           'non-deterministic', 'needs_population',],
                                     descr='skl.ExtraTreesClassifier()')

        sklExtraTreesRegression = _skl_import('ensemble', 'ExtraTreesRegressor')
        regrswh += SKLLearnerAdapter(sklExtraTreesRegression(),
                                     tags=['extra-trees', 'linear', 'non-linear',
                                           'regression',
                                           'non-deterministic', 'needs_population',],
                                     descr='skl.ExtraTreesRegression()')


    if _skl_version >= '0.8':
        sklPLSRegression = _skl_import('pls', 'PLSRegression')
        # somewhat silly use of PLS, but oh well
        regrswh += SKLLearnerAdapter(sklPLSRegression(n_components=1),
                                     tags=['linear', 'regression'],
                                     enforce_dim=1,
                                     descr='skl.PLSRegression_1d()')

    if externals.versions['skl'] >= '0.6.0':
        sklLars = _skl_import('linear_model',
                              _skl_api09 and 'Lars' or 'LARS')
        sklLassoLars = _skl_import('linear_model',
                                   _skl_api09 and 'LassoLars' or 'LassoLARS')
        sklElasticNet = _skl_import('linear_model', 'ElasticNet')
        _lars_tags = ['lars', 'linear', 'regression', 'does_feature_selection']

        _lars = SKLLearnerAdapter(sklLars(),
                                  tags=_lars_tags,
                                  descr='skl.Lars()')

        _lasso_lars = SKLLearnerAdapter(sklLassoLars(alpha=0.01),
                                        tags=_lars_tags,
                                        descr='skl.LassoLars()')

        _elastic_net = SKLLearnerAdapter(
            sklElasticNet(alpha=.01, rho=.3),
            tags=['enet', 'regression', 'linear', # 'has_sensitivity',
                 'does_feature_selection'],
            descr='skl.ElasticNet()')

        regrswh += [_lars, _lasso_lars, _elastic_net]
        clfswh += [RegressionAsClassifier(_lars, descr="skl.Lars_C()"),
                   RegressionAsClassifier(_lasso_lars, descr="skl.LassoLars_C()"),
                   RegressionAsClassifier(_elastic_net, descr="skl.ElasticNet_C()"),
                   ]

    if _skl_version >= '0.10':
        sklLassoLarsIC = _skl_import('linear_model', 'LassoLarsIC')
        _lasso_lars_ic = SKLLearnerAdapter(sklLassoLarsIC(),
                                           tags=_lars_tags,
                                           descr='skl.LassoLarsIC()')
        regrswh += [_lasso_lars_ic]
        clfswh += [RegressionAsClassifier(_lasso_lars_ic,
                                          descr='skl.LassoLarsIC_C()')]

# kNN
clfswh += kNN(k=5, descr="kNN(k=5)")
clfswh += kNN(k=5, voting='majority', descr="kNN(k=5, voting='majority')")

clfswh += \
    FeatureSelectionClassifier(
        kNN(),
        SensitivityBasedFeatureSelection(
           SMLRWeights(SMLR(lm=1.0, implementation="C"),
                       postproc=maxofabs_sample()),
           RangeElementSelector(mode='select')),
        descr="kNN on SMLR(lm=1) non-0")

clfswh += \
    FeatureSelectionClassifier(
        kNN(),
        SensitivityBasedFeatureSelection(
           OneWayAnova(),
           FractionTailSelector(0.05, mode='select', tail='upper')),
        descr="kNN on 5%(ANOVA)")

clfswh += \
    FeatureSelectionClassifier(
        kNN(),
        SensitivityBasedFeatureSelection(
           OneWayAnova(),
           FixedNElementTailSelector(50, mode='select', tail='upper')),
        descr="kNN on 50(ANOVA)")


# GNB
clfswh += GNB(descr="GNB()")
clfswh += GNB(common_variance=True, descr="GNB(common_variance=True)")
clfswh += GNB(prior='uniform', descr="GNB(prior='uniform')")
clfswh += \
    FeatureSelectionClassifier(
        GNB(),
        SensitivityBasedFeatureSelection(
           OneWayAnova(),
           FractionTailSelector(0.05, mode='select', tail='upper')),
        descr="GNB on 5%(ANOVA)")


# GPR
if externals.exists('scipy'):
    from mvpa2.clfs.gpr import GPR

    regrswh += GPR(kernel=LinearKernel(), descr="GPR(kernel='linear')")
    regrswh += GPR(kernel=SquaredExponentialKernel(),
                   descr="GPR(kernel='sqexp')")

    # Add wrapped GPR as a classifier
    gprcb = RegressionAsClassifier(
        GPR(kernel=GeneralizedLinearKernel()), descr="GPRC(kernel='linear')")
    # lets remove multiclass label from it
    gprcb.__tags__.pop(gprcb.__tags__.index('multiclass'))
    clfswh += gprcb

    # and create a proper multiclass one
    clfswh += MulticlassClassifier(
        RegressionAsClassifier(
            GPR(kernel=GeneralizedLinearKernel())),
        descr="GPRCM(kernel='linear')")

# BLR
from mvpa2.clfs.blr import BLR
clfswh += RegressionAsClassifier(BLR(descr="BLR()"),
                                 descr="BLR Classifier")

#PLR
from mvpa2.clfs.plr import PLR
clfswh += PLR(descr="PLR()")
if externals.exists('scipy'):
    clfswh += PLR(reduced=0.05, descr="PLR(reduced=0.01)")

# SVM stuff

if len(clfswh['linear', 'svm']) > 0:

    linearSVMC = clfswh['linear', 'svm',
                             cfg.get('svm', 'backend', default='libsvm').lower()
                             ][0]

    # "Interesting" classifiers
    clfswh += \
         FeatureSelectionClassifier(
             linearSVMC.clone(),
             SensitivityBasedFeatureSelection(
                SMLRWeights(SMLR(lm=0.1, implementation="C"),
                            postproc=maxofabs_sample()),
                RangeElementSelector(mode='select')),
             descr="LinSVM on SMLR(lm=0.1) non-0")


    clfswh += \
        FeatureSelectionClassifier(
            linearSVMC.clone(),
            SensitivityBasedFeatureSelection(
                SMLRWeights(SMLR(lm=1.0, implementation="C"),
                            postproc=maxofabs_sample()),
                RangeElementSelector(mode='select')),
            descr="LinSVM on SMLR(lm=1) non-0")


    # "Interesting" classifiers
    clfswh += \
        FeatureSelectionClassifier(
            RbfCSVMC(),
            SensitivityBasedFeatureSelection(
               SMLRWeights(SMLR(lm=1.0, implementation="C"),
                           postproc=maxofabs_sample()),
               RangeElementSelector(mode='select')),
            descr="RbfSVM on SMLR(lm=1) non-0")

    clfswh += \
        FeatureSelectionClassifier(
            linearSVMC.clone(),
            SensitivityBasedFeatureSelection(
               OneWayAnova(),
               FractionTailSelector(0.05, mode='select', tail='upper')),
            descr="LinSVM on 5%(ANOVA)")

    clfswh += \
        FeatureSelectionClassifier(
            linearSVMC.clone(),
            SensitivityBasedFeatureSelection(
               OneWayAnova(),
               FixedNElementTailSelector(50, mode='select', tail='upper')),
            descr="LinSVM on 50(ANOVA)")

    clfswh += \
        FeatureSelectionClassifier(
            linearSVMC.clone(),
            SensitivityBasedFeatureSelection(
               linearSVMC.get_sensitivity_analyzer(postproc=maxofabs_sample()),
               FractionTailSelector(0.05, mode='select', tail='upper')),
            descr="LinSVM on 5%(SVM)")

    clfswh += \
        FeatureSelectionClassifier(
            linearSVMC.clone(),
            SensitivityBasedFeatureSelection(
               linearSVMC.get_sensitivity_analyzer(postproc=maxofabs_sample()),
               FixedNElementTailSelector(50, mode='select', tail='upper')),
            descr="LinSVM on 50(SVM)")


    ### Imports which are specific to RFEs
    # from mvpa2.datasets.splitters import OddEvenSplitter
    # from mvpa2.clfs.transerror import TransferError
    # from mvpa2.featsel.rfe import RFE
    # from mvpa2.featsel.helpers import FixedErrorThresholdStopCrit
    # from mvpa2.clfs.transerror import ConfusionBasedError

    # SVM with unbiased RFE -- transfer-error to another splits, or in
    # other terms leave-1-out error on the same dataset
    # Has to be bound outside of the RFE definition since both analyzer and
    # error should use the same instance.
    rfesvm_split = SplitClassifier(linearSVMC)#clfswh['LinearSVMC'][0])

    # "Almost" classical RFE. If this works it would differ only that
    # our transfer_error is based on internal splitting and classifier used
    # within RFE is a split classifier and its sensitivities per split will get
    # averaged
    #

    #clfswh += \
    #  FeatureSelectionClassifier(
    #    clf = LinearCSVMC(), #clfswh['LinearSVMC'][0],         # we train LinearSVM
    #    feature_selection = RFE(             # on features selected via RFE
    #        # based on sensitivity of a clf which does splitting internally
    #        sensitivity_analyzer=rfesvm_split.get_sensitivity_analyzer(),
    #        transfer_error=ConfusionBasedError(
    #           rfesvm_split,
    #           confusion_state="confusion"),
    #           # and whose internal error we use
    #        feature_selector=FractionTailSelector(
    #                           0.2, mode='discard', tail='lower'),
    #                           # remove 20% of features at each step
    #        update_sensitivity=True),
    #        # update sensitivity at each step
    #    descr='LinSVM+RFE(splits_avg)' )
    #
    #clfswh += \
    #  FeatureSelectionClassifier(
    #    clf = LinearCSVMC(),                 # we train LinearSVM
    #    feature_selection = RFE(             # on features selected via RFE
    #        # based on sensitivity of a clf which does splitting internally
    #        sensitivity_analyzer=rfesvm_split.get_sensitivity_analyzer(),
    #        transfer_error=ConfusionBasedError(
    #           rfesvm_split,
    #           confusion_state="confusion"),
    #           # and whose internal error we use
    #        feature_selector=FractionTailSelector(
    #                           0.2, mode='discard', tail='lower'),
    #                           # remove 20% of features at each step
    #        update_sensitivity=False),
    #        # update sensitivity at each step
    #    descr='LinSVM+RFE(splits_avg,static)' )

    rfesvm = LinearCSVMC()

    # This classifier will do RFE while taking transfer error to testing
    # set of that split. Resultant classifier is voted classifier on top
    # of all splits, let see what that would do ;-)
    #clfswh += \
    #  SplitClassifier(                      # which does splitting internally
    #   FeatureSelectionClassifier(
    #    clf = LinearCSVMC(),
    #    feature_selection = RFE(             # on features selected via RFE
    #        sensitivity_analyzer=\
    #            rfesvm.get_sensitivity_analyzer(postproc=absolute_features()),
    #        transfer_error=TransferError(rfesvm),
    #        stopping_criterion=FixedErrorThresholdStopCrit(0.05),
    #        feature_selector=FractionTailSelector(
    #                           0.2, mode='discard', tail='lower'),
    #                           # remove 20% of features at each step
    #        update_sensitivity=True)),
    #        # update sensitivity at each step
    #    descr='LinSVM+RFE(N-Fold)')
    #
    #
    #clfswh += \
    #  SplitClassifier(                      # which does splitting internally
    #   FeatureSelectionClassifier(
    #    clf = LinearCSVMC(),
    #    feature_selection = RFE(             # on features selected via RFE
    #        sensitivity_analyzer=\
    #            rfesvm.get_sensitivity_analyzer(postproc=absolute_features()),
    #        transfer_error=TransferError(rfesvm),
    #        stopping_criterion=FixedErrorThresholdStopCrit(0.05),
    #        feature_selector=FractionTailSelector(
    #                           0.2, mode='discard', tail='lower'),
    #                           # remove 20% of features at each step
    #        update_sensitivity=True)),
    #        # update sensitivity at each step
    #   splitter = OddEvenSplitter(),
    #   descr='LinSVM+RFE(OddEven)')