/usr/share/pyshared/mvpa2/clfs/warehouse.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Collection of classifiers to ease the exploration.
"""
__docformat__ = 'restructuredtext'
from mvpa2.base.types import is_sequence_type
# Define sets of classifiers
from mvpa2.clfs.meta import FeatureSelectionClassifier, SplitClassifier, \
MulticlassClassifier, RegressionAsClassifier
from mvpa2.clfs.smlr import SMLR
from mvpa2.clfs.knn import kNN
from mvpa2.clfs.gda import LDA, QDA
from mvpa2.clfs.gnb import GNB
from mvpa2.kernels.np import LinearKernel, SquaredExponentialKernel, \
GeneralizedLinearKernel
# Helpers
from mvpa2.base import externals, cfg
from mvpa2.measures.anova import OneWayAnova
from mvpa2.mappers.fx import absolute_features, maxofabs_sample
from mvpa2.clfs.smlr import SMLRWeights
from mvpa2.featsel.helpers import FractionTailSelector, \
FixedNElementTailSelector, RangeElementSelector
from mvpa2.featsel.base import SensitivityBasedFeatureSelection
# Kernels
from mvpa2.kernels.libsvm import LinearLSKernel, RbfLSKernel, \
PolyLSKernel, SigmoidLSKernel
_KNOWN_INTERNALS = [ 'knn', 'binary', 'svm', 'linear',
'smlr', 'does_feature_selection', 'has_sensitivity',
'multiclass', 'non-linear', 'kernel-based', 'lars',
'regression', 'regression_based', 'random_tie_breaking',
'non-deterministic', 'needs_population',
'libsvm', 'sg', 'meta', 'retrainable', 'gpr',
'notrain2predict', 'ridge', 'blr', 'gnpp', 'enet', 'glmnet',
'gnb', 'plr', 'rpy2', 'swig', 'skl', 'lda', 'qda',
'random-forest', 'extra-trees']
class Warehouse(object):
"""Class to keep known instantiated classifiers
Should provide easy ways to select classifiers of needed kind:
clfswh['linear', 'svm'] should return all linear SVMs
clfswh['linear', 'multiclass'] should return all linear classifiers
capable of doing multiclass classification
"""
def __init__(self, known_tags=None, matches=None):
"""Initialize warehouse
Parameters
----------
known_tags : list of str
List of known tags
matches : dict
Optional dictionary of additional matches. E.g. since any
regression can be used as a binary classifier,
matches={'binary':['regression']}, would allow to provide
regressions also if 'binary' was requested
"""
self._known_tags = set(known_tags)
self.__items = []
self.__keys = set()
if matches is None:
matches = {}
self.__matches = matches
def __getitem__(self, *args):
if isinstance(args[0], tuple):
args = args[0]
# so we explicitely handle [:]
if args == (slice(None),):
args = []
# lets remove optional modifier '!'
dargs = set([str(x).lstrip('!') for x in args]).difference(
self._known_tags)
if len(dargs)>0:
raise ValueError, "Unknown internals %s requested. Known are %s" % \
(list(dargs), list(self._known_tags))
# dummy implementation for now
result = []
# check every known item
for item in self.__items:
good = True
# by default each one counts
for arg in args:
# check for rejection first
if arg.startswith('!'):
if (arg[1:] in item.__tags__):
good = False
break
else:
continue
# check for inclusion
found = False
for arg in [arg] + self.__matches.get(arg, []):
if (arg in item.__tags__):
found = True
break
good = found
if not good:
break
if good:
result.append(item)
return result
def __iadd__(self, item):
if is_sequence_type(item):
for item_ in item:
self.__iadd__(item_)
else:
if not hasattr(item, '__tags__'):
raise ValueError, "Cannot register %s " % item + \
"which has no __tags__ defined"
if len(item.__tags__) == 0:
raise ValueError, "Cannot register %s " % item + \
"which has empty __tags__"
clf_internals = set(item.__tags__)
if clf_internals.issubset(self._known_tags):
self.__items.append(item)
self.__keys |= clf_internals
else:
raise ValueError, 'Unknown clf internal(s) %s' % \
clf_internals.difference(self._known_tags)
return self
@property
def internals(self):
"""Known internal tags of the classifiers
"""
return self.__keys
def listing(self):
"""Listing (description + internals) of registered items
"""
return [(x.descr, x.__tags__) for x in self.__items]
@property
def items(self):
"""Registered items
"""
return self.__items
clfswh = Warehouse(known_tags=_KNOWN_INTERNALS) # classifiers
regrswh = Warehouse(known_tags=_KNOWN_INTERNALS) # regressions
# NB:
# - Nu-classifiers are turned off since for haxby DS default nu
# is an 'infisible' one
# - Python's SMLR is turned off for the duration of development
# since it is slow and results should be the same as of C version
#
clfswh += [ SMLR(lm=0.1, implementation="C", descr="SMLR(lm=0.1)"),
SMLR(lm=1.0, implementation="C", descr="SMLR(lm=1.0)"),
#SMLR(lm=10.0, implementation="C", descr="SMLR(lm=10.0)"),
#SMLR(lm=100.0, implementation="C", descr="SMLR(lm=100.0)"),
#SMLR(implementation="Python", descr="SMLR(Python)")
]
clfswh += \
[ MulticlassClassifier(SMLR(lm=0.1),
descr='Pairs+maxvote multiclass on SMLR(lm=0.1)') ]
if externals.exists('libsvm'):
from mvpa2.clfs.libsvmc import svm as libsvm
clfswh._known_tags.update(libsvm.SVM._KNOWN_IMPLEMENTATIONS.keys())
clfswh += [libsvm.SVM(descr="libsvm.LinSVM(C=def)", probability=1),
libsvm.SVM(
C=-10.0, descr="libsvm.LinSVM(C=10*def)", probability=1),
libsvm.SVM(
C=1.0, descr="libsvm.LinSVM(C=1)", probability=1),
libsvm.SVM(svm_impl='NU_SVC',
descr="libsvm.LinNuSVM(nu=def)", probability=1)
]
clfswh += [libsvm.SVM(kernel=RbfLSKernel(), descr="libsvm.RbfSVM()"),
libsvm.SVM(kernel=RbfLSKernel(), svm_impl='NU_SVC',
descr="libsvm.RbfNuSVM(nu=def)"),
libsvm.SVM(kernel=PolyLSKernel(),
descr='libsvm.PolySVM()', probability=1),
#libsvm.svm.SVM(kernel=SigmoidLSKernel(),
# svm_impl='C_SVC',
# descr='libsvm.SigmoidSVM()'),
]
# regressions
regrswh._known_tags.update(['EPSILON_SVR', 'NU_SVR'])
regrswh += [libsvm.SVM(svm_impl='EPSILON_SVR', descr='libsvm epsilon-SVR'),
libsvm.SVM(svm_impl='NU_SVR', descr='libsvm nu-SVR')]
if externals.exists('shogun'):
from mvpa2.clfs import sg
from mvpa2.kernels.sg import LinearSGKernel, PolySGKernel, RbfSGKernel
clfswh._known_tags.update(sg.SVM._KNOWN_IMPLEMENTATIONS)
# TODO: some classifiers are not yet ready to be used out-of-the-box in
# PyMVPA, thus we don't populate warehouse with their instances
bad_classifiers = [
'mpd', # was segfault, now non-training on testcases, and XOR.
# and was described as "for educational purposes", thus
# shouldn't be used for real data ;-)
# Should be a drop-in replacement for lightsvm
'gpbt', # fails to train for testAnalyzerWithSplitClassifier
# also 'retraining' doesn't work -- fails to generalize
'gmnp', # would fail with 'assertion Cache_Size > 2'
# if shogun < 0.6.3, also refuses to train
'svrlight', # fails to 'generalize' as a binary classifier
# after 'binning'
'krr', # fails to generalize
'svmocas', # fails to generalize
'libsvr' # XXXregr removing regressions as classifiers
]
if not externals.exists('sg_fixedcachesize'):
# would fail with 'assertion Cache_Size > 2' if shogun < 0.6.3
bad_classifiers.append('gnpp')
for impl in sg.SVM._KNOWN_IMPLEMENTATIONS:
# Uncomment the ones to disable
if impl in bad_classifiers:
continue
clfswh += [
sg.SVM(
descr="sg.LinSVM(C=def)/%s" % impl, svm_impl=impl),
sg.SVM(
C=-10.0, descr="sg.LinSVM(C=10*def)/%s" % impl, svm_impl=impl),
sg.SVM(
C=1.0, descr="sg.LinSVM(C=1)/%s" % impl, svm_impl=impl),
]
if not impl in ['svmocas']: # inherently linear only
clfswh += [
sg.SVM(kernel=RbfSGKernel(),
descr="sg.RbfSVM()/%s" % impl, svm_impl=impl),
# sg.SVM(kernel=RbfSGKernel(),
# descr="sg.RbfSVM(gamma=0.1)/%s"
# % impl, svm_impl=impl, gamma=0.1),
# sg.SVM(descr="sg.SigmoidSVM()/%s"
# % impl, svm_impl=impl, kernel=SigmoidSGKernel(),),
]
_optional_regressions = []
if externals.exists('shogun.krr') and externals.versions['shogun'] >= '0.9':
_optional_regressions += ['krr']
for impl in ['libsvr'] + _optional_regressions:# \
# XXX svrlight sucks in SG -- dont' have time to figure it out
#+ ([], ['svrlight'])['svrlight' in sg.SVM._KNOWN_IMPLEMENTATIONS]:
regrswh._known_tags.update([impl])
regrswh += [ sg.SVM(svm_impl=impl, descr='sg.LinSVMR()/%s' % impl),
#sg.SVM(svm_impl=impl, kernel_type='RBF',
# descr='sg.RBFSVMR()/%s' % impl),
]
if len(clfswh['svm', 'linear']) > 0:
# if any SVM implementation is known, import default ones
from mvpa2.clfs.svm import *
# lars from R via RPy
if externals.exists('lars'):
import mvpa2.clfs.lars as lars
from mvpa2.clfs.lars import LARS
for model in lars.known_models:
# XXX create proper repository of classifiers!
lars_clf = RegressionAsClassifier(
LARS(descr="LARS(%s)" % model,
model_type=model),
descr='LARS(model_type=%r) classifier' % model)
clfswh += lars_clf
# is a regression, too
lars_regr = LARS(descr="_LARS(%s)" % model,
model_type=model)
regrswh += lars_regr
# clfswh += MulticlassClassifier(lars,
# descr='Multiclass %s' % lars.descr)
## Still fails unittests battery although overhauled otherwise.
## # enet from R via RPy2
## if externals.exists('elasticnet'):
## from mvpa2.clfs.enet import ENET
## clfswh += RegressionAsClassifier(ENET(),
## descr="RegressionAsClassifier(ENET())")
## regrswh += ENET(descr="ENET()")
# glmnet from R via RPy
if externals.exists('glmnet'):
from mvpa2.clfs.glmnet import GLMNET_C, GLMNET_R
clfswh += GLMNET_C(descr="GLMNET_C()")
regrswh += GLMNET_R(descr="GLMNET_R()")
# LDA/QDA
clfswh += LDA(descr='LDA()')
clfswh += QDA(descr='QDA()')
if externals.exists('skl'):
_skl_version = externals.versions['skl']
_skl_api09 = _skl_version >= '0.9'
def _skl_import(submod, class_):
if _skl_api09:
submod_ = __import__('sklearn.%s' % submod, fromlist=[submod])
else:
submod_ = __import__('scikits.learn.%s' % submod, fromlist=[submod])
return getattr(submod_, class_)
sklLDA = _skl_import('lda', 'LDA')
from mvpa2.clfs.skl.base import SKLLearnerAdapter
clfswh += SKLLearnerAdapter(sklLDA(),
tags=['lda', 'linear', 'multiclass', 'binary'],
descr='skl.LDA()')
if _skl_version >= '0.10':
# Out of Bag Estimates
sklRandomForestClassifier = _skl_import('ensemble', 'RandomForestClassifier')
clfswh += SKLLearnerAdapter(sklRandomForestClassifier(),
tags=['random-forest', 'linear', 'non-linear',
'binary', 'multiclass',
'non-deterministic', 'needs_population',],
descr='skl.RandomForestClassifier()')
sklRandomForestRegression = _skl_import('ensemble', 'RandomForestRegressor')
regrswh += SKLLearnerAdapter(sklRandomForestRegression(),
tags=['random-forest', 'linear', 'non-linear',
'regression',
'non-deterministic', 'needs_population',],
descr='skl.RandomForestRegression()')
sklExtraTreesClassifier = _skl_import('ensemble', 'ExtraTreesClassifier')
clfswh += SKLLearnerAdapter(sklExtraTreesClassifier(),
tags=['extra-trees', 'linear', 'non-linear',
'binary', 'multiclass',
'non-deterministic', 'needs_population',],
descr='skl.ExtraTreesClassifier()')
sklExtraTreesRegression = _skl_import('ensemble', 'ExtraTreesRegressor')
regrswh += SKLLearnerAdapter(sklExtraTreesRegression(),
tags=['extra-trees', 'linear', 'non-linear',
'regression',
'non-deterministic', 'needs_population',],
descr='skl.ExtraTreesRegression()')
if _skl_version >= '0.8':
sklPLSRegression = _skl_import('pls', 'PLSRegression')
# somewhat silly use of PLS, but oh well
regrswh += SKLLearnerAdapter(sklPLSRegression(n_components=1),
tags=['linear', 'regression'],
enforce_dim=1,
descr='skl.PLSRegression_1d()')
if externals.versions['skl'] >= '0.6.0':
sklLars = _skl_import('linear_model',
_skl_api09 and 'Lars' or 'LARS')
sklLassoLars = _skl_import('linear_model',
_skl_api09 and 'LassoLars' or 'LassoLARS')
sklElasticNet = _skl_import('linear_model', 'ElasticNet')
_lars_tags = ['lars', 'linear', 'regression', 'does_feature_selection']
_lars = SKLLearnerAdapter(sklLars(),
tags=_lars_tags,
descr='skl.Lars()')
_lasso_lars = SKLLearnerAdapter(sklLassoLars(alpha=0.01),
tags=_lars_tags,
descr='skl.LassoLars()')
_elastic_net = SKLLearnerAdapter(
sklElasticNet(alpha=.01, rho=.3),
tags=['enet', 'regression', 'linear', # 'has_sensitivity',
'does_feature_selection'],
descr='skl.ElasticNet()')
regrswh += [_lars, _lasso_lars, _elastic_net]
clfswh += [RegressionAsClassifier(_lars, descr="skl.Lars_C()"),
RegressionAsClassifier(_lasso_lars, descr="skl.LassoLars_C()"),
RegressionAsClassifier(_elastic_net, descr="skl.ElasticNet_C()"),
]
if _skl_version >= '0.10':
sklLassoLarsIC = _skl_import('linear_model', 'LassoLarsIC')
_lasso_lars_ic = SKLLearnerAdapter(sklLassoLarsIC(),
tags=_lars_tags,
descr='skl.LassoLarsIC()')
regrswh += [_lasso_lars_ic]
clfswh += [RegressionAsClassifier(_lasso_lars_ic,
descr='skl.LassoLarsIC_C()')]
# kNN
clfswh += kNN(k=5, descr="kNN(k=5)")
clfswh += kNN(k=5, voting='majority', descr="kNN(k=5, voting='majority')")
clfswh += \
FeatureSelectionClassifier(
kNN(),
SensitivityBasedFeatureSelection(
SMLRWeights(SMLR(lm=1.0, implementation="C"),
postproc=maxofabs_sample()),
RangeElementSelector(mode='select')),
descr="kNN on SMLR(lm=1) non-0")
clfswh += \
FeatureSelectionClassifier(
kNN(),
SensitivityBasedFeatureSelection(
OneWayAnova(),
FractionTailSelector(0.05, mode='select', tail='upper')),
descr="kNN on 5%(ANOVA)")
clfswh += \
FeatureSelectionClassifier(
kNN(),
SensitivityBasedFeatureSelection(
OneWayAnova(),
FixedNElementTailSelector(50, mode='select', tail='upper')),
descr="kNN on 50(ANOVA)")
# GNB
clfswh += GNB(descr="GNB()")
clfswh += GNB(common_variance=True, descr="GNB(common_variance=True)")
clfswh += GNB(prior='uniform', descr="GNB(prior='uniform')")
clfswh += \
FeatureSelectionClassifier(
GNB(),
SensitivityBasedFeatureSelection(
OneWayAnova(),
FractionTailSelector(0.05, mode='select', tail='upper')),
descr="GNB on 5%(ANOVA)")
# GPR
if externals.exists('scipy'):
from mvpa2.clfs.gpr import GPR
regrswh += GPR(kernel=LinearKernel(), descr="GPR(kernel='linear')")
regrswh += GPR(kernel=SquaredExponentialKernel(),
descr="GPR(kernel='sqexp')")
# Add wrapped GPR as a classifier
gprcb = RegressionAsClassifier(
GPR(kernel=GeneralizedLinearKernel()), descr="GPRC(kernel='linear')")
# lets remove multiclass label from it
gprcb.__tags__.pop(gprcb.__tags__.index('multiclass'))
clfswh += gprcb
# and create a proper multiclass one
clfswh += MulticlassClassifier(
RegressionAsClassifier(
GPR(kernel=GeneralizedLinearKernel())),
descr="GPRCM(kernel='linear')")
# BLR
from mvpa2.clfs.blr import BLR
clfswh += RegressionAsClassifier(BLR(descr="BLR()"),
descr="BLR Classifier")
#PLR
from mvpa2.clfs.plr import PLR
clfswh += PLR(descr="PLR()")
if externals.exists('scipy'):
clfswh += PLR(reduced=0.05, descr="PLR(reduced=0.01)")
# SVM stuff
if len(clfswh['linear', 'svm']) > 0:
linearSVMC = clfswh['linear', 'svm',
cfg.get('svm', 'backend', default='libsvm').lower()
][0]
# "Interesting" classifiers
clfswh += \
FeatureSelectionClassifier(
linearSVMC.clone(),
SensitivityBasedFeatureSelection(
SMLRWeights(SMLR(lm=0.1, implementation="C"),
postproc=maxofabs_sample()),
RangeElementSelector(mode='select')),
descr="LinSVM on SMLR(lm=0.1) non-0")
clfswh += \
FeatureSelectionClassifier(
linearSVMC.clone(),
SensitivityBasedFeatureSelection(
SMLRWeights(SMLR(lm=1.0, implementation="C"),
postproc=maxofabs_sample()),
RangeElementSelector(mode='select')),
descr="LinSVM on SMLR(lm=1) non-0")
# "Interesting" classifiers
clfswh += \
FeatureSelectionClassifier(
RbfCSVMC(),
SensitivityBasedFeatureSelection(
SMLRWeights(SMLR(lm=1.0, implementation="C"),
postproc=maxofabs_sample()),
RangeElementSelector(mode='select')),
descr="RbfSVM on SMLR(lm=1) non-0")
clfswh += \
FeatureSelectionClassifier(
linearSVMC.clone(),
SensitivityBasedFeatureSelection(
OneWayAnova(),
FractionTailSelector(0.05, mode='select', tail='upper')),
descr="LinSVM on 5%(ANOVA)")
clfswh += \
FeatureSelectionClassifier(
linearSVMC.clone(),
SensitivityBasedFeatureSelection(
OneWayAnova(),
FixedNElementTailSelector(50, mode='select', tail='upper')),
descr="LinSVM on 50(ANOVA)")
clfswh += \
FeatureSelectionClassifier(
linearSVMC.clone(),
SensitivityBasedFeatureSelection(
linearSVMC.get_sensitivity_analyzer(postproc=maxofabs_sample()),
FractionTailSelector(0.05, mode='select', tail='upper')),
descr="LinSVM on 5%(SVM)")
clfswh += \
FeatureSelectionClassifier(
linearSVMC.clone(),
SensitivityBasedFeatureSelection(
linearSVMC.get_sensitivity_analyzer(postproc=maxofabs_sample()),
FixedNElementTailSelector(50, mode='select', tail='upper')),
descr="LinSVM on 50(SVM)")
### Imports which are specific to RFEs
# from mvpa2.datasets.splitters import OddEvenSplitter
# from mvpa2.clfs.transerror import TransferError
# from mvpa2.featsel.rfe import RFE
# from mvpa2.featsel.helpers import FixedErrorThresholdStopCrit
# from mvpa2.clfs.transerror import ConfusionBasedError
# SVM with unbiased RFE -- transfer-error to another splits, or in
# other terms leave-1-out error on the same dataset
# Has to be bound outside of the RFE definition since both analyzer and
# error should use the same instance.
rfesvm_split = SplitClassifier(linearSVMC)#clfswh['LinearSVMC'][0])
# "Almost" classical RFE. If this works it would differ only that
# our transfer_error is based on internal splitting and classifier used
# within RFE is a split classifier and its sensitivities per split will get
# averaged
#
#clfswh += \
# FeatureSelectionClassifier(
# clf = LinearCSVMC(), #clfswh['LinearSVMC'][0], # we train LinearSVM
# feature_selection = RFE( # on features selected via RFE
# # based on sensitivity of a clf which does splitting internally
# sensitivity_analyzer=rfesvm_split.get_sensitivity_analyzer(),
# transfer_error=ConfusionBasedError(
# rfesvm_split,
# confusion_state="confusion"),
# # and whose internal error we use
# feature_selector=FractionTailSelector(
# 0.2, mode='discard', tail='lower'),
# # remove 20% of features at each step
# update_sensitivity=True),
# # update sensitivity at each step
# descr='LinSVM+RFE(splits_avg)' )
#
#clfswh += \
# FeatureSelectionClassifier(
# clf = LinearCSVMC(), # we train LinearSVM
# feature_selection = RFE( # on features selected via RFE
# # based on sensitivity of a clf which does splitting internally
# sensitivity_analyzer=rfesvm_split.get_sensitivity_analyzer(),
# transfer_error=ConfusionBasedError(
# rfesvm_split,
# confusion_state="confusion"),
# # and whose internal error we use
# feature_selector=FractionTailSelector(
# 0.2, mode='discard', tail='lower'),
# # remove 20% of features at each step
# update_sensitivity=False),
# # update sensitivity at each step
# descr='LinSVM+RFE(splits_avg,static)' )
rfesvm = LinearCSVMC()
# This classifier will do RFE while taking transfer error to testing
# set of that split. Resultant classifier is voted classifier on top
# of all splits, let see what that would do ;-)
#clfswh += \
# SplitClassifier( # which does splitting internally
# FeatureSelectionClassifier(
# clf = LinearCSVMC(),
# feature_selection = RFE( # on features selected via RFE
# sensitivity_analyzer=\
# rfesvm.get_sensitivity_analyzer(postproc=absolute_features()),
# transfer_error=TransferError(rfesvm),
# stopping_criterion=FixedErrorThresholdStopCrit(0.05),
# feature_selector=FractionTailSelector(
# 0.2, mode='discard', tail='lower'),
# # remove 20% of features at each step
# update_sensitivity=True)),
# # update sensitivity at each step
# descr='LinSVM+RFE(N-Fold)')
#
#
#clfswh += \
# SplitClassifier( # which does splitting internally
# FeatureSelectionClassifier(
# clf = LinearCSVMC(),
# feature_selection = RFE( # on features selected via RFE
# sensitivity_analyzer=\
# rfesvm.get_sensitivity_analyzer(postproc=absolute_features()),
# transfer_error=TransferError(rfesvm),
# stopping_criterion=FixedErrorThresholdStopCrit(0.05),
# feature_selector=FractionTailSelector(
# 0.2, mode='discard', tail='lower'),
# # remove 20% of features at each step
# update_sensitivity=True)),
# # update sensitivity at each step
# splitter = OddEvenSplitter(),
# descr='LinSVM+RFE(OddEven)')
|