/usr/share/pyshared/mvpa2/clfs/smlr.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Sparse Multinomial Logistic Regression classifier."""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2 import _random_seed
from mvpa2.base import warning, externals
from mvpa2.clfs.base import Classifier, accepts_dataset_as_samples
from mvpa2.measures.base import Sensitivity
from mvpa2.misc.exceptions import ConvergenceError
from mvpa2.base.param import Parameter
from mvpa2.base.state import ConditionalAttribute
from mvpa2.datasets.base import Dataset
__all__ = [ "SMLR", "SMLRWeights" ]
_DEFAULT_IMPLEMENTATION = "Python"
if externals.exists('ctypes'):
# Uber-fast C-version of the stepwise regression
try:
from mvpa2.clfs.libsmlrc import stepwise_regression as _cStepwiseRegression
_DEFAULT_IMPLEMENTATION = "C"
except OSError, e:
warning("Failed to load fast implementation of SMLR. May be you "
"forgotten to build it. We will use much slower pure-Python "
"version. Original exception was %s" % (e,))
_cStepwiseRegression = None
else:
_cStepwiseRegression = None
warning("SMLR implementation without ctypes is overwhelmingly slow."
" You are strongly advised to install python-ctypes")
if __debug__:
from mvpa2.base import debug
def _label2oneofm(labels, ulabels):
"""Convert labels to one-of-M form.
TODO: Might be useful elsewhere so could migrate into misc/
"""
# allocate for the new one-of-M labels
new_labels = np.zeros((len(labels), len(ulabels)))
# loop and convert to one-of-M
for i, c in enumerate(ulabels):
new_labels[labels == c, i] = 1
return new_labels
class SMLR(Classifier):
"""Sparse Multinomial Logistic Regression `Classifier`.
This is an implementation of the SMLR algorithm published in
:ref:`Krishnapuram et al., 2005 <KCF+05>` (2005, IEEE Transactions
on Pattern Analysis and Machine Intelligence). Be sure to cite
that article if you use this classifier for your work.
"""
__tags__ = [ 'smlr', 'linear', 'has_sensitivity', 'binary',
'multiclass', 'does_feature_selection',
'random_tie_breaking']
# XXX: later 'kernel-based'?
lm = Parameter(.1, min=1e-10, allowedtype='float',
doc="""The penalty term lambda. Larger values will give rise to
more sparsification.""")
convergence_tol = Parameter(1e-3, min=1e-10, max=1.0, allowedtype='float',
doc="""When the weight change for each cycle drops below this value
the regression is considered converged. Smaller values
lead to tighter convergence.""")
resamp_decay = Parameter(0.5, allowedtype='float', min=0.0, max=1.0,
doc="""Decay rate in the probability of resampling a zero weight.
1.0 will immediately decrease to the min_resamp from 1.0, 0.0
will never decrease from 1.0.""")
min_resamp = Parameter(0.001, allowedtype='float', min=1e-10, max=1.0,
doc="Minimum resampling probability for zeroed weights")
maxiter = Parameter(10000, allowedtype='int', min=1,
doc="""Maximum number of iterations before stopping if not
converged.""")
has_bias = Parameter(True, allowedtype='bool',
doc="""Whether to add a bias term to allow fits to data not through
zero""")
fit_all_weights = Parameter(True, allowedtype='bool',
doc="""Whether to fit weights for all classes or to the number of
classes minus one. Both should give nearly identical results, but
if you set fit_all_weights to True it will take a little longer
and yield weights that are fully analyzable for each class. Also,
note that the convergence rate may be different, but convergence
point is the same.""")
implementation = Parameter(_DEFAULT_IMPLEMENTATION,
allowedtype='basestring',
choices=["C", "Python"],
doc="""Use C or Python as the implementation of
stepwise_regression. C version brings significant speedup thus is
the default one.""")
ties = Parameter('random', allowedtype='string',
doc="""Resolve ties which could occur. At the moment
only obvious ties resulting in identical weights
per two classes are detected and resolved
randomly by injecting small amount of noise into
the estimates of tied categories.
Set to False to avoid this behavior""")
seed = Parameter(_random_seed, allowedtype='None or int',
doc="""Seed to be used to initialize random generator, might be
used to replicate the run""")
unsparsify = Parameter(False, allowedtype='bool',
doc="""***EXPERIMENTAL*** Whether to unsparsify the weights via
regression. Note that it likely leads to worse classifier
performance, but more interpretable weights.""")
std_to_keep = Parameter(2.0, allowedtype='float',
doc="""Standard deviation threshold of weights to keep when
unsparsifying.""")
def __init__(self, **kwargs):
"""Initialize an SMLR classifier.
"""
"""
TODO:
# Add in likelihood calculation
# Add kernels, not just direct methods.
"""
# init base class first
Classifier.__init__(self, **kwargs)
if _cStepwiseRegression is None and self.params.implementation == 'C':
warning('SMLR: C implementation is not available.'
' Using pure Python one')
self.params.implementation = 'Python'
# pylint friendly initializations
self._ulabels = None
"""Unigue labels from the training set."""
self.__weights_all = None
"""Contains all weights including bias values"""
self.__weights = None
"""Just the weights, without the biases"""
self.__biases = None
"""The biases, will remain none if has_bias is False"""
##REF: Name was automagically refactored
def _python_stepwise_regression(self, w, X, XY, Xw, E,
auto_corr,
lambda_over_2_auto_corr,
S,
M,
maxiter,
convergence_tol,
resamp_decay,
min_resamp,
verbose,
seed = None):
"""The (much slower) python version of the stepwise
regression. I'm keeping this around for now so that we can
compare results."""
# get the data information into easy vars
ns, nd = X.shape
# initialize the iterative optimization
converged = False
incr = np.finfo(np.float).max
non_zero, basis, m, wasted_basis, cycles = 0, 0, 0, 0, 0
sum2_w_diff, sum2_w_old, w_diff = 0.0, 0.0, 0.0
p_resamp = np.ones(w.shape, dtype=np.float)
if seed is not None:
# set the random seed
np.random.seed(seed)
if __debug__:
debug("SMLR_", "random seed=%s" % seed)
# perform the optimization
while not converged and cycles < maxiter:
# get the starting weight
w_old = w[basis, m]
# see if we're gonna update
if (w_old != 0) or np.random.rand() < p_resamp[basis, m]:
# let's do it
# get the probability
P = E[:, m]/S
# set the gradient
grad = XY[basis, m] - np.dot(X[:, basis], P)
# calculate the new weight with the Laplacian prior
w_new = w_old + grad/auto_corr[basis]
# keep weights within bounds
if w_new > lambda_over_2_auto_corr[basis]:
w_new -= lambda_over_2_auto_corr[basis]
changed = True
# unmark from being zero if necessary
if w_old == 0:
non_zero += 1
# reset the prob of resampling
p_resamp[basis, m] = 1.0
elif w_new < -lambda_over_2_auto_corr[basis]:
w_new += lambda_over_2_auto_corr[basis]
changed = True
# unmark from being zero if necessary
if w_old == 0:
non_zero += 1
# reset the prob of resampling
p_resamp[basis, m] = 1.0
else:
# gonna zero it out
w_new = 0.0
# decrease the p_resamp
p_resamp[basis, m] -= (p_resamp[basis, m] - \
min_resamp) * resamp_decay
# set number of non-zero
if w_old == 0:
changed = False
wasted_basis += 1
else:
changed = True
non_zero -= 1
# process any changes
if changed:
#print "w[%d, %d] = %g" % (basis, m, w_new)
# update the expected values
w_diff = w_new - w_old
Xw[:, m] = Xw[:, m] + X[:, basis]*w_diff
E_new_m = np.exp(Xw[:, m])
S += E_new_m - E[:, m]
E[:, m] = E_new_m
# update the weight
w[basis, m] = w_new
# keep track of the sqrt sum squared diffs
sum2_w_diff += w_diff*w_diff
# add to the old no matter what
sum2_w_old += w_old*w_old
# update the class and basis
m = np.mod(m+1, w.shape[1])
if m == 0:
# we completed a cycle of labels
basis = np.mod(basis+1, nd)
if basis == 0:
# we completed a cycle of features
cycles += 1
# assess convergence
incr = np.sqrt(sum2_w_diff) / \
(np.sqrt(sum2_w_old)+np.finfo(np.float).eps)
# save the new weights
converged = incr < convergence_tol
if __debug__:
debug("SMLR_", \
"cycle=%d ; incr=%g ; non_zero=%d ; " %
(cycles, incr, non_zero) +
"wasted_basis=%d ; " %
(wasted_basis) +
"sum2_w_old=%g ; sum2_w_diff=%g" %
(sum2_w_old, sum2_w_diff))
# reset the sum diffs and wasted_basis
sum2_w_diff = 0.0
sum2_w_old = 0.0
wasted_basis = 0
if not converged:
raise ConvergenceError, \
"More than %d Iterations without convergence" % \
(maxiter)
# calcualte the log likelihoods and posteriors for the training data
#log_likelihood = x
return cycles
def _train(self, dataset):
"""Train the classifier using `dataset` (`Dataset`).
"""
targets_sa_name = self.get_space() # name of targets sa
targets_sa = dataset.sa[targets_sa_name] # actual targets sa
# Process the labels to turn into 1 of N encoding
uniquelabels = targets_sa.unique
labels = _label2oneofm(targets_sa.value, uniquelabels)
self._ulabels = uniquelabels.copy()
Y = labels
M = len(self._ulabels)
# get the dataset information into easy vars
X = dataset.samples
# see if we are adding a bias term
if self.params.has_bias:
if __debug__:
debug("SMLR_", "hstacking 1s for bias")
# append the bias term to the features
X = np.hstack((X, np.ones((X.shape[0], 1), dtype=X.dtype)))
if self.params.implementation.upper() == 'C':
_stepwise_regression = _cStepwiseRegression
#
# TODO: avoid copying to non-contig arrays, use strides in ctypes?
if not (X.flags['C_CONTIGUOUS'] and X.flags['ALIGNED']):
if __debug__:
debug("SMLR_",
"Copying data to get it C_CONTIGUOUS/ALIGNED")
X = np.array(X, copy=True, dtype=np.double, order='C')
# currently must be double for the C code
if X.dtype != np.double:
if __debug__:
debug("SMLR_", "Converting data to double")
# must cast to double
X = X.astype(np.double)
# set the feature dimensions
elif self.params.implementation.upper() == 'PYTHON':
_stepwise_regression = self._python_stepwise_regression
else:
raise ValueError, \
"Unknown implementation %s of stepwise_regression" % \
self.params.implementation
# set the feature dimensions
ns, nd = X.shape
# decide the size of weights based on num classes estimated
if self.params.fit_all_weights:
c_to_fit = M
else:
c_to_fit = M-1
# Precompute what we can
auto_corr = ((M-1.)/(2.*M))*(np.sum(X*X, 0))
XY = np.dot(X.T, Y[:, :c_to_fit])
lambda_over_2_auto_corr = (self.params.lm/2.)/auto_corr
# set starting values
w = np.zeros((nd, c_to_fit), dtype=np.double)
Xw = np.zeros((ns, c_to_fit), dtype=np.double)
E = np.ones((ns, c_to_fit), dtype=np.double)
S = M*np.ones(ns, dtype=np.double)
# set verbosity
if __debug__:
verbosity = int( "SMLR_" in debug.active )
debug('SMLR_', 'Calling stepwise_regression. Seed %s' % self.params.seed)
else:
verbosity = 0
# call the chosen version of stepwise_regression
cycles = _stepwise_regression(w,
X,
XY,
Xw,
E,
auto_corr,
lambda_over_2_auto_corr,
S,
M,
self.params.maxiter,
self.params.convergence_tol,
self.params.resamp_decay,
self.params.min_resamp,
verbosity,
self.params.seed)
if cycles >= self.params.maxiter:
# did not converge
raise ConvergenceError, \
"More than %d Iterations without convergence" % \
(self.params.maxiter)
# see if unsparsify the weights
if self.params.unsparsify:
# unsparsify
w = self._unsparsify_weights(X, w)
# resolve ties if present
self.__ties = None
if self.params.ties:
if self.params.ties == 'random':
# check if there is a tie showing itself as absent
# difference between two w's
wdot = np.dot(w.T, -w)
ties = np.where(np.max(np.abs(wdot), axis=0) == 0)[0]
if len(ties):
warning("SMLR: detected ties in categories %s. Small "
"amount of noise will be injected into result "
"estimates upon prediction to break the ties"
% self._ulabels[ties])
self.__ties = ties
## w_non0 = np.nonzero(w)
## w_non0_max = np.max(np.abs(w[w_non0]))
## w_non0_idx = np.unique(w_non0[0])
## w_non0_len = len(w_non0_idx)
## for f_idx in np.where(ties)[0]:
## w[w_non0_idx, f_idx] += \
## 0.001 * np.random.normal(size=(w_non0_len,))
else:
raise ValueError("Do not know how to treat ties=%r"
% (self.params.ties,))
# save the weights
self.__weights_all = w
self.__weights = w[:dataset.nfeatures, :]
if self.ca.is_enabled('feature_ids'):
self.ca.feature_ids = np.where(np.max(np.abs(w[:dataset.nfeatures, :]),
axis=1)>0)[0]
# and a bias
if self.params.has_bias:
self.__biases = w[-1, :]
if __debug__:
debug('SMLR', "train finished in %d cycles on data.shape=%s " %
(cycles, X.shape) +
"min:max(data)=%f:%f, got min:max(w)=%f:%f" %
(np.min(X), np.max(X), np.min(w), np.max(w)))
def _unsparsify_weights(self, samples, weights):
"""Unsparsify weights via least squares regression."""
# allocate for the new weights
new_weights = np.zeros(weights.shape, dtype=np.double)
# get the sample data we're predicting and the sum squared
# total variance
b = samples
sst = np.power(b - b.mean(0),2).sum(0)
# loop over each column
for i in range(weights.shape[1]):
w = weights[:,i]
# get the nonzero ind
ind = w!=0
# get the features with non-zero weights
a = b[:,ind]
# predict all the data with the non-zero features
betas = np.linalg.lstsq(a,b)[0]
# determine the R^2 for each feature based on the sum
# squared prediction error
f = np.dot(a,betas)
sse = np.power((b-f),2).sum(0)
rsquare = np.zeros(sse.shape,dtype=sse.dtype)
gind = sst>0
rsquare[gind] = 1-(sse[gind]/sst[gind])
# derrive new weights by combining the betas and weights
# scaled by the rsquare
new_weights[:,i] = np.dot(w[ind],betas)*rsquare
# take the tails
tozero = np.abs(new_weights) < self.params.std_to_keep*np.std(new_weights)
orig_zero = weights==0.0
if orig_zero.sum() < tozero.sum():
# should not end up with fewer than start
tozero = orig_zero
new_weights[tozero] = 0.0
debug('SMLR_', "Start nonzero: %d; Finish nonzero: %d" % \
((weights!=0).sum(), (new_weights!=0).sum()))
return new_weights
##REF: Name was automagically refactored
def _get_feature_ids(self):
"""Return ids of the used features
"""
return np.where(np.max(np.abs(self.__weights), axis=1)>0)[0]
@accepts_dataset_as_samples
def _predict(self, data):
"""Predict the output for the provided data.
"""
# see if we are adding a bias term
if self.params.has_bias:
# append the bias term to the features
data = np.hstack((data,
np.ones((data.shape[0], 1), dtype=data.dtype)))
# append the zeros column to the weights if necessary
if self.params.fit_all_weights:
w = self.__weights_all
else:
w = np.hstack((self.__weights_all,
np.zeros((self.__weights_all.shape[0], 1))))
# determine the probability values for making the prediction
dot_prod = np.dot(data, w)
E = np.exp(dot_prod)
if self.__ties is not None:
# 1e-5 should be adequate since anyways this is done
# already after exponentiation
E[:, self.__ties] += \
1e-5 * np.random.normal(size=(len(E), len(self.__ties)))
S = np.sum(E, 1)
if __debug__:
debug('SMLR', "predict on data.shape=%s min:max(data)=%f:%f " %
(`data.shape`, np.min(data), np.max(data)) +
"min:max(w)=%f:%f min:max(dot_prod)=%f:%f min:max(E)=%f:%f" %
(np.min(w), np.max(w), np.min(dot_prod), np.max(dot_prod),
np.min(E), np.max(E)))
values = E / S[:, np.newaxis] #.repeat(E.shape[1], axis=1)
self.ca.estimates = values
# generate predictions
predictions = np.asarray([self._ulabels[np.argmax(vals)]
for vals in values])
# no need to assign conditional attribute here -- would be done
# in Classifier._postpredict anyway
#self.predictions = predictions
return predictions
##REF: Name was automagically refactored
def get_sensitivity_analyzer(self, **kwargs):
"""Returns a sensitivity analyzer for SMLR."""
return SMLRWeights(self, **kwargs)
biases = property(lambda self: self.__biases)
weights = property(lambda self: self.__weights)
class SMLRWeights(Sensitivity):
"""`SensitivityAnalyzer` that reports the weights SMLR trained
on a given `Dataset`.
By default SMLR provides multiple weights per feature (one per label in
training dataset). By default, all weights are combined into a single
sensitivity value. Please, see the `FeaturewiseMeasure` constructor
arguments how to custmize this behavior.
"""
_LEGAL_CLFS = [ SMLR ]
def _call(self, dataset=None):
"""Extract weights from SMLR classifier.
SMLR always has weights available, so nothing has to be computed here.
"""
clf = self.clf
# transpose to have the number of features on the second axis
# (as usual)
weights = clf.weights.T
if __debug__:
debug('SMLR',
"Extracting weights for %d-class SMLR" %
(len(weights) + 1) +
"Result: min=%f max=%f" %\
(np.min(weights), np.max(weights)))
# limit the labels to the number of sensitivity sets, to deal
# with the case of `fit_all_weights=False`
ds = Dataset(weights,
sa={clf.get_space(): clf._ulabels[:len(weights)]})
if clf.params.has_bias:
ds.sa['biases'] = clf.biases
return ds
|