/usr/share/pyshared/mvpa2/clfs/similarity.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# Copyright (c) 2008 Emanuele Olivetti <emanuele@relativita.com>
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Similarity functions for prototype-based projection."""
import numpy as np
from mvpa2.clfs.distance import squared_euclidean_distance
if __debug__:
from mvpa2.base import debug
class Similarity(object):
"""Similarity function base class.
"""
def __repr__(self):
return "Similarity()"
def computed(self, data1, data2=None):
raise NotImplementedError
class SingleDimensionSimilarity(Similarity):
"""TODO
.. math:: e^{(-|data1_j - data2_j|_2)}
"""
def __init__(self, d=0, **kwargs):
"""
Parameters
----------
d : int
Dimension (feature) across which to compute similarity
**kwargs
Passed to Similarity
"""
Similarity.__init__(self, **kwargs)
self.d = d
def computed(self, data1, data2=None):
if data2 == None: data2 = data1
self.similarity_matrix = np.exp(-np.abs(data1[:, self.d],
data2[:, self.d]))
return self.similarity_matrix
class StreamlineSimilarity(Similarity):
"""Compute similarity between two streamlines.
"""
def __init__(self, distance, gamma=1.0):
"""
Parameters
----------
distance : func
Distance measure
gamma : float
Exponent coefficient
"""
Similarity.__init__(self)
self.distance = distance
self.gamma = gamma
def computed(self, data1, data2=None):
if data2 == None:
data2 = data1
self.distance_matrix = np.zeros((len(data1), len(data2)))
# setup helpers to pull out content of object-type arrays
if isinstance(data1, np.ndarray) and np.issubdtype(data1.dtype, np.object):
d1extract = _pass_obj_content
else:
d1extract = lambda x: x
if isinstance(data2, np.ndarray) and np.issubdtype(data2.dtype, np.object):
d2extract = _pass_obj_content
else:
d2extract = lambda x: x
# TODO: use np.fromfunction
for i, d1 in enumerate(data1):
for j, d2 in enumerate(data2):
self.distance_matrix[i,j] = self.distance(d1extract(data1[i]),
d2extract(data2[j]))
self.similarity_matrix = np.exp(-self.gamma*self.distance_matrix)
return self.similarity_matrix
def _pass_obj_content(data):
"""Helper that can be used to return the content of a single-element
array of type 'object' to access its real content.
"""
return data[0]
|