/usr/share/pyshared/mvpa2/clfs/meta.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Classes for meta classifiers -- classifiers which use other classifiers
Meta Classifiers can be grouped according to their function as
:group BoostedClassifiers: CombinedClassifier MulticlassClassifier
SplitClassifier
:group ProxyClassifiers: ProxyClassifier BinaryClassifier MappedClassifier
FeatureSelectionClassifier
:group PredictionsCombiners for CombinedClassifier: PredictionsCombiner
MaximalVote MeanPrediction
"""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.misc.args import group_kwargs
from mvpa2.base.types import is_sequence_type
from mvpa2.base.param import Parameter
from mvpa2.generators.splitters import Splitter
from mvpa2.generators.partition import NFoldPartitioner
from mvpa2.datasets.miscfx import get_samples_by_attr
from mvpa2.misc.attrmap import AttributeMap
from mvpa2.base.dochelpers import _str
from mvpa2.base.state import ConditionalAttribute, ClassWithCollections
from mvpa2.clfs.base import Classifier
from mvpa2.clfs.distance import cartesian_distance
from mvpa2.misc.transformers import first_axis_mean
from mvpa2.measures.base import \
BoostedClassifierSensitivityAnalyzer, ProxyClassifierSensitivityAnalyzer, \
MappedClassifierSensitivityAnalyzer, \
FeatureSelectionClassifierSensitivityAnalyzer, \
RegressionAsClassifierSensitivityAnalyzer, \
BinaryClassifierSensitivityAnalyzer, \
_dont_force_slaves
from mvpa2.base import warning
if __debug__:
from mvpa2.base import debug
class BoostedClassifier(Classifier):
"""Classifier containing the farm of other classifiers.
Should rarely be used directly. Use one of its childs instead
"""
# should not be needed if we have prediction_estimates upstairs
raw_predictions = ConditionalAttribute(enabled=False,
doc="Predictions obtained from each classifier")
raw_estimates = ConditionalAttribute(enabled=False,
doc="Estimates obtained from each classifier")
def __init__(self, clfs=None, propagate_ca=True,
**kwargs):
"""Initialize the instance.
Parameters
----------
clfs : list
list of classifier instances to use (slave classifiers)
propagate_ca : bool
either to propagate enabled ca into slave classifiers.
It is in effect only when slaves get assigned - so if state
is enabled not during construction, it would not necessarily
propagate into slaves
kwargs : dict
dict of keyworded arguments which might get used
by State or Classifier
"""
if clfs == None:
clfs = []
Classifier.__init__(self, **kwargs)
self.__clfs = None
"""Pylint friendly definition of __clfs"""
self.__propagate_ca = propagate_ca
"""Enable current enabled ca in slave classifiers"""
self._set_classifiers(clfs)
"""Store the list of classifiers"""
def __repr__(self, prefixes=[]):
if self.__clfs is None or len(self.__clfs)==0:
#prefix_ = "clfs=%s" % repr(self.__clfs)
prefix_ = []
else:
prefix_ = ["clfs=[%s,...]" % repr(self.__clfs[0])]
return super(BoostedClassifier, self).__repr__(prefix_ + prefixes)
def _train(self, dataset):
"""Train `BoostedClassifier`
"""
for clf in self.__clfs:
clf.train(dataset)
def _posttrain(self, dataset):
"""Custom posttrain of `BoostedClassifier`
Harvest over the trained classifiers if it was asked to so
"""
Classifier._posttrain(self, dataset)
if self.params.retrainable:
self.__changedData_isset = False
def _get_feature_ids(self):
"""Custom _get_feature_ids for `BoostedClassifier`
"""
# return union of all used features by slave classifiers
feature_ids = set([])
for clf in self.__clfs:
feature_ids = feature_ids.union(set(clf.ca.feature_ids))
return list(feature_ids)
def _predict(self, dataset):
"""Predict using `BoostedClassifier`
"""
raw_predictions = [ clf.predict(dataset) for clf in self.__clfs ]
self.ca.raw_predictions = raw_predictions
assert(len(self.__clfs)>0)
if self.ca.is_enabled("estimates"):
if np.array([x.ca.is_enabled("estimates")
for x in self.__clfs]).all():
estimates = [ clf.ca.estimates for clf in self.__clfs ]
self.ca.raw_estimates = estimates
else:
warning("One or more classifiers in %s has no 'estimates' state" %
self + "enabled, thus BoostedClassifier can't have" +
" 'raw_estimates' conditional attribute defined")
return raw_predictions
def _set_classifiers(self, clfs):
"""Set the classifiers used by the boosted classifier
We have to allow to set list of classifiers after the object
was actually created. It will be used by
MulticlassClassifier
"""
self.__clfs = clfs
"""Classifiers to use"""
if len(clfs):
# enable corresponding ca in the slave-classifiers
if self.__propagate_ca:
for clf in self.__clfs:
clf.ca.enable(self.ca.enabled, missingok=True)
# adhere to their capabilities + 'multiclass'
# XXX do intersection across all classifiers!
# TODO: this seems to be wrong since it can be regression etc
self.__tags__ = [ 'binary', 'multiclass', 'meta' ]
if len(clfs)>0:
self.__tags__ += self.__clfs[0].__tags__
def _untrain(self):
"""Untrain `BoostedClassifier`
Has to untrain any known classifier
"""
if not self.trained:
return
for clf in self.clfs:
clf.untrain()
super(BoostedClassifier, self)._untrain()
def get_sensitivity_analyzer(self, **kwargs):
"""Return an appropriate SensitivityAnalyzer"""
return BoostedClassifierSensitivityAnalyzer(
self,
**kwargs)
clfs = property(fget=lambda x:x.__clfs,
fset=_set_classifiers,
doc="Used classifiers")
class ProxyClassifier(Classifier):
"""Classifier which decorates another classifier
Possible uses:
- modify data somehow prior training/testing:
* normalization
* feature selection
* modification
- optimized classifier?
"""
__sa_class__ = ProxyClassifierSensitivityAnalyzer
"""Sensitivity analyzer to use for a generic ProxyClassifier"""
def __init__(self, clf, **kwargs):
"""Initialize the instance of ProxyClassifier
Parameters
----------
clf : Classifier
Classifier to proxy, i.e. to use after decoration
"""
# Is done before parents __init__ since we need
# it for _set_retrainable called during __init__
self.__clf = clf
"""Store the classifier to use."""
Classifier.__init__(self, **kwargs)
# adhere to slave classifier capabilities
# TODO: unittest
self.__tags__ = self.__tags__[:] + ['meta']
if clf is not None:
self.__tags__ += clf.__tags__
def __repr__(self, prefixes=[]):
return super(ProxyClassifier, self).__repr__(
["clf=%s" % repr(self.__clf)] + prefixes)
def __str__(self, *args, **kwargs):
return super(ProxyClassifier, self).__str__(
str(self.__clf), *args, **kwargs)
def summary(self):
s = super(ProxyClassifier, self).summary()
if self.trained:
s += "\n Slave classifier summary:" + \
'\n + %s' % \
(self.__clf.summary().replace('\n', '\n |'))
return s
def _set_retrainable(self, value, force=False):
# XXX Lazy implementation
self.clf._set_retrainable(value, force=force)
super(ProxyClassifier, self)._set_retrainable(value, force)
if value and not (self.ca['retrained']
is self.clf.ca['retrained']):
if __debug__:
debug("CLFPRX",
"Rebinding conditional attributes from slave clf %s", (self.clf,))
self.ca['retrained'] = self.clf.ca['retrained']
self.ca['repredicted'] = self.clf.ca['repredicted']
def _train(self, dataset):
"""Train `ProxyClassifier`
"""
# base class does nothing much -- just proxies requests to underlying
# classifier
self.__clf.train(dataset)
# for the ease of access
# TODO: if to copy we should exclude some ca which are defined in
# base Classifier (such as training_time, predicting_time)
# YOH: for now _copy_ca_ would copy only set ca variables. If
# anything needs to be overriden in the parent's class, it is
# welcome to do so
#self.ca._copy_ca_(self.__clf, deep=False)
def _predict(self, dataset):
"""Predict using `ProxyClassifier`
"""
clf = self.__clf
if self.ca.is_enabled('estimates'):
clf.ca.enable(['estimates'])
result = clf.predict(dataset)
# for the ease of access
self.ca._copy_ca_(self.__clf, ['estimates'], deep=False)
return result
def _untrain(self):
"""Untrain ProxyClassifier
"""
if not self.__clf is None:
self.__clf.untrain()
super(ProxyClassifier, self)._untrain()
@group_kwargs(prefixes=['slave_'], passthrough=True)
def get_sensitivity_analyzer(self, slave_kwargs, **kwargs):
"""Return an appropriate SensitivityAnalyzer
Parameters
----------
slave_kwargs : dict
Arguments to be passed to the proxied (slave) classifier
**kwargs
Specific additional arguments for the sensitivity analyzer
for the class. See documentation of a corresponding `.__sa_class__`.
"""
return self.__sa_class__(
self,
analyzer=self.__clf.get_sensitivity_analyzer(**slave_kwargs),
**kwargs)
clf = property(lambda x:x.__clf, doc="Used `Classifier`")
#
# Various combiners for CombinedClassifier
#
class PredictionsCombiner(ClassWithCollections):
"""Base class for combining decisions of multiple classifiers"""
def train(self, clfs, dataset):
"""PredictionsCombiner might need to be trained
Parameters
----------
clfs : list of Classifier
List of classifiers to combine. Has to be classifiers (not
pure predictions), since combiner might use some other
conditional attributes (value's) instead of pure prediction's
dataset : Dataset
training data in this case
"""
pass
def __call__(self, clfs, dataset):
"""Call function
Parameters
----------
clfs : list of Classifier
List of classifiers to combine. Has to be classifiers (not
pure predictions), since combiner might use some other
conditional attributes (value's) instead of pure prediction's
"""
raise NotImplementedError
class MaximalVote(PredictionsCombiner):
"""Provides a decision using maximal vote rule"""
predictions = ConditionalAttribute(enabled=True,
doc="Voted predictions")
estimates = ConditionalAttribute(enabled=False,
doc="Estimates keep counts across classifiers for each label/sample")
# TODO: Might get a parameter to use raw decision estimates if
# voting is not unambigous (ie two classes have equal number of
# votes
def __init__(self, **kwargs):
PredictionsCombiner.__init__(self, **kwargs)
def __call__(self, clfs, dataset):
"""Actuall callable - perform voting
Extended functionality which might not be needed actually:
Since `BinaryClassifier` might return a list of possible
predictions (not just a single one), we should consider all of those
MaximalVote doesn't care about dataset itself
"""
if len(clfs)==0:
return [] # to don't even bother
all_label_counts = None
for clf in clfs:
# Lets check first if necessary conditional attribute is enabled
if not clf.ca.is_enabled("predictions"):
raise ValueError, "MaximalVote needs classifiers (such as " + \
"%s) with state 'predictions' enabled" % clf
predictions = clf.ca.predictions
if all_label_counts is None:
all_label_counts = [ {} for i in xrange(len(predictions)) ]
# for every sample
for i in xrange(len(predictions)):
prediction = predictions[i]
# XXX fishy location due to literal labels,
# TODO simplify assumptions and logic
if isinstance(prediction, basestring) or \
not is_sequence_type(prediction):
prediction = (prediction,)
for label in prediction: # for every label
# XXX we might have multiple labels assigned
# but might not -- don't remember now
if not all_label_counts[i].has_key(label):
all_label_counts[i][label] = 0
all_label_counts[i][label] += 1
predictions = []
# select maximal vote now for each sample
for i in xrange(len(all_label_counts)):
label_counts = all_label_counts[i]
# lets do explicit search for max so we know
# if it is unique
maxk = [] # labels of elements with max vote
maxv = -1
for k, v in label_counts.iteritems():
if v > maxv:
maxk = [k]
maxv = v
elif v == maxv:
maxk.append(k)
assert len(maxk) >= 1, \
"We should have obtained at least a single key of max label"
if len(maxk) > 1:
warning("We got multiple labels %s which have the " % maxk +
"same maximal vote %d. XXX disambiguate" % maxv)
predictions.append(maxk[0])
ca = self.ca
ca.estimates = all_label_counts
ca.predictions = predictions
return predictions
class MeanPrediction(PredictionsCombiner):
"""Provides a decision by taking mean of the results
"""
predictions = ConditionalAttribute(enabled=True,
doc="Mean predictions")
estimates = ConditionalAttribute(enabled=True,
doc="Predictions from all classifiers are stored")
def __call__(self, clfs, dataset):
"""Actuall callable - perform meaning
"""
if len(clfs)==0:
return [] # to don't even bother
all_predictions = []
for clf in clfs:
# Lets check first if necessary conditional attribute is enabled
if not clf.ca.is_enabled("predictions"):
raise ValueError, "MeanPrediction needs learners (such " \
" as %s) with state 'predictions' enabled" % clf
all_predictions.append(clf.ca.predictions)
# compute mean
all_predictions = np.asarray(all_predictions)
predictions = np.mean(all_predictions, axis=0)
ca = self.ca
ca.estimates = all_predictions
ca.predictions = predictions
return predictions
class ClassifierCombiner(PredictionsCombiner):
"""Provides a decision using training a classifier on predictions/estimates
TODO: implement
"""
predictions = ConditionalAttribute(enabled=True,
doc="Trained predictions")
def __init__(self, clf, variables=None):
"""Initialize `ClassifierCombiner`
Parameters
----------
clf : Classifier
Classifier to train on the predictions
variables : list of str
List of conditional attributes stored in 'combined' classifiers, which
to use as features for training this classifier
"""
PredictionsCombiner.__init__(self)
self.__clf = clf
"""Classifier to train on `variables` ca of provided classifiers"""
if variables == None:
variables = ['predictions']
self.__variables = variables
"""What conditional attributes of the classifiers to use"""
def _untrain(self):
"""It might be needed to untrain used classifier"""
if self.__clf:
self.__clf._untrain()
def __call__(self, clfs, dataset):
"""
"""
if len(clfs)==0:
return [] # to don't even bother
raise NotImplementedError
class CombinedClassifier(BoostedClassifier):
"""`BoostedClassifier` which combines predictions using some
`PredictionsCombiner` functor.
"""
def __init__(self, clfs=None, combiner=None, **kwargs):
"""Initialize the instance.
Parameters
----------
clfs : list of Classifier
list of classifier instances to use
combiner : PredictionsCombiner
callable which takes care about combining multiple
results into a single one (e.g. maximal vote for
classification, MeanPrediction for regression))
kwargs : dict
dict of keyworded arguments which might get used
by State or Classifier
NB: `combiner` might need to operate not on 'predictions' descrete
labels but rather on raw 'class' estimates classifiers
estimate (which is pretty much what is stored under
`estimates`
"""
if clfs == None:
clfs = []
BoostedClassifier.__init__(self, clfs, **kwargs)
self.__combiner = combiner
"""Functor destined to combine results of multiple classifiers"""
def __repr__(self, prefixes=[]):
"""Literal representation of `CombinedClassifier`.
"""
return super(CombinedClassifier, self).__repr__(
["combiner=%s" % repr(self.__combiner)] + prefixes)
@property
def combiner(self):
# Decide either we are dealing with regressions
# by looking at 1st learner
if self.__combiner is None:
self.__combiner = (
MaximalVote,
MeanPrediction)[int(self.clfs[0].__is_regression__)]()
return self.__combiner
def summary(self):
"""Provide summary for the `CombinedClassifier`.
"""
s = super(CombinedClassifier, self).summary()
if self.trained:
s += "\n Slave classifiers summaries:"
for i, clf in enumerate(self.clfs):
s += '\n + %d clf: %s' % \
(i, clf.summary().replace('\n', '\n |'))
return s
def _untrain(self):
"""Untrain `CombinedClassifier`
"""
try:
self.__combiner.untrain()
except:
pass
super(CombinedClassifier, self)._untrain()
def _train(self, dataset):
"""Train `CombinedClassifier`
"""
BoostedClassifier._train(self, dataset)
# combiner might need to train as well
self.combiner.train(self.clfs, dataset)
def _predict(self, dataset):
"""Predict using `CombinedClassifier`
"""
ca = self.ca
cca = self.combiner.ca
BoostedClassifier._predict(self, dataset)
if ca.is_enabled("estimates"):
cca.enable('estimates')
# combiner will make use of conditional attributes instead of only predictions
# returned from _predict
predictions = self.combiner(self.clfs, dataset)
ca.predictions = predictions
if ca.is_enabled("estimates"):
if cca.is_active("estimates"):
# XXX or may be we could leave simply up to accessing .combiner?
ca.estimates = cca.estimates
else:
if __debug__:
warning("Boosted classifier %s has 'estimates' state enabled,"
" but combiner doesn't have 'estimates' active, thus "
" .estimates cannot be provided directly, access .clfs"
% self)
return predictions
class TreeClassifier(ProxyClassifier):
"""`TreeClassifier` which allows to create hierarchy of classifiers
Functions by grouping some labels into a single "meta-label" and training
classifier first to separate between meta-labels. Then
each group further proceeds with classification within each group.
Possible scenarios::
TreeClassifier(SVM(),
{'animate': ((1,2,3,4),
TreeClassifier(SVM(),
{'human': (('male', 'female'), SVM()),
'animals': (('monkey', 'dog'), SMLR())})),
'inanimate': ((5,6,7,8), SMLR())})
would create classifier which would first do binary classification
to separate animate from inanimate, then for animate result it
would separate to classify human vs animal and so on::
SVM
/ \
animate inanimate
/ \
SVM SMLR
/ \ / | \ \
human animal 5 6 7 8
| |
SVM SVM
/ \ / \
male female monkey dog
1 2 3 4
If it is desired to have a trailing node with a single label and
thus without any classification, such as in
SVM
/ \
g1 g2
/ \
1 SVM
/ \
2 3
then just specify None as the classifier to use::
TreeClassifier(SVM(),
{'g1': ((1,), None),
'g2': ((1,2,3,4), SVM())})
"""
_DEV__doc = """
Questions:
* how to collect confusion matrices at a particular layer if such
classifier is given to SplitClassifier or CVTE
* What additional ca to add, something like
clf_labels -- store remapped labels for the dataset
clf_estimates ...
* What do we store into estimates ? just estimates from the clfs[]
for corresponding samples, or top level clf estimates as well?
* what should be SensitivityAnalyzer? by default it would just
use top slave classifier (i.e. animate/inanimate)
Problems?
* .clf is not actually "proxied" per se, so not sure what things
should be taken care of yet...
TODO:
* Allow a group to be just a single category, so no further
classifier is needed, it just should stay separate from the
other groups
Possible TODO:
* Add ability to provide results of clf.estimates as features into
input of clfs[]. This way we could provide additional 'similarity'
information to the "other" branch
"""
def __init__(self, clf, groups, **kwargs):
"""Initialize TreeClassifier
Parameters
----------
clf : Classifier
Classifier to separate between the groups
groups : dict of meta-label: tuple of (tuple of labels, classifier)
Defines the groups of labels and their classifiers.
See :class:`~mvpa2.clfs.meta.TreeClassifier` for example
"""
# Basic initialization
ProxyClassifier.__init__(self, clf, **kwargs)
# XXX RF: probably create internal structure with dictionary,
# not just a tuple, and store all information in there
# accordingly
self._groups = groups
self._index2group = groups.keys()
# All processing of groups needs to be handled within _train
# since labels_map is not available here and definition
# is allowed to carry both symbolic and numeric values for
# labels
# XXX TODO due to abandoning of labels_map -- may be this is
# no longer the case?
# We can only assign respective classifiers
self.clfs = dict([(gk, c) for gk, (ls, c) in groups.iteritems()])
"""Dictionary of classifiers used by the groups"""
def __repr__(self, prefixes=[]):
"""String representation of TreeClassifier
"""
prefix = "groups=%s" % repr(self._groups)
return super(TreeClassifier, self).__repr__([prefix] + prefixes)
def __str__(self, *args, **kwargs):
return super(TreeClassifier, self).__str__(
', '.join(['%s: %s' % i for i in self.clfs.iteritems()]),
*args, **kwargs)
def summary(self):
"""Provide summary for the `TreeClassifier`.
"""
s = super(TreeClassifier, self).summary()
if self.trained:
s += "\n Node classifiers summaries:"
for i, (clfname, clf) in enumerate(self.clfs.iteritems()):
s += '\n + %d %s clf: %s' % \
(i, clfname, clf.summary().replace('\n', '\n |'))
return s
def _train(self, dataset):
"""Train TreeClassifier
First train .clf on groupped samples, then train each of .clfs
on a corresponding subset of samples.
"""
# Local bindings
targets_sa_name = self.get_space() # name of targets sa
targets_sa = dataset.sa[targets_sa_name] # actual targets sa
clf, clfs, index2group = self.clf, self.clfs, self._index2group
# Handle groups of labels
groups = self._groups
groups_labels = {} # just groups with numeric indexes
label2index = {} # how to map old labels to new
known = set()
for gi, gk in enumerate(index2group):
ls = groups[gk][0]
known_already = known.intersection(ls)
if len(known_already):
raise ValueError, "Grouping of labels is not appropriate. " \
"Got labels %s already among known in %s. " % \
(known_already, known )
groups_labels[gk] = ls # needed? XXX
for l in ls :
label2index[l] = gi
known = known.union(ls )
# TODO: check if different literal labels weren't mapped into
# same numerical but here asked to belong to different groups
# yoh: actually above should catch it
# Check if none of the labels is missing from known groups
dsul = set(targets_sa.unique)
if known.intersection(dsul) != dsul:
raise ValueError, \
"Dataset %s had some labels not defined in groups: %s. " \
"Known are %s" % \
(dataset, dsul.difference(known), known)
# We can operate on the same dataset here
# Nope: doesn't work nicely with the classifier like kNN
# which links to the dataset used in the training,
# so whenever if we simply restore labels back, we
# would get kNN confused in _predict()
# Therefore we need to create a shallow copy of
# dataset and provide it with new labels
ds_group = dataset.copy(deep=False)
# assign new labels group samples into groups of labels
ds_group.sa[targets_sa_name].value = [label2index[l]
for l in targets_sa.value]
# train primary classifier
if __debug__:
debug('CLFTREE', "Training primary %s on %s with targets %s",
(clf, ds_group, ds_group.sa[targets_sa_name].unique))
clf.train(ds_group)
# ??? should we obtain values for anything?
# may be we could training values of .clfs to be added
# as features to the next level -- i.e. .clfs
# Proceed with next 'layer' and train all .clfs on corresponding
# selection of samples
# ??? should we may be allow additional 'the other' category, to
# signal contain all the other categories data? probably not
# since then it would lead to undetermined prediction (which
# might be not a bad thing altogether...)
for gk in groups.iterkeys():
clf = clfs[gk]
group_labels = groups_labels[gk]
if clf is None: # Trailing node
if len(group_labels) != 1:
raise ValueError(
"Trailing nodes with no classifier assigned must have "
"only a single label associated. Got %s defined in "
"group %r of %s"
% (group_labels, gk, self))
else:
# select samples per each group
ids = get_samples_by_attr(dataset, targets_sa_name, groups_labels[gk])
ds_group = dataset[ids]
if __debug__:
debug('CLFTREE', "Training %s for group %s on %s",
(clfs[gk], gk, ds_group))
# and train corresponding slave clf
clf.train(ds_group)
def _untrain(self):
"""Untrain TreeClassifier
"""
super(TreeClassifier, self)._untrain()
for clf in self.clfs.values():
if clf is not None:
clf.untrain()
def _predict(self, dataset):
"""
"""
# Local bindings
clfs, index2group, groups = self.clfs, self._index2group, self._groups
clf_predictions = np.asanyarray(ProxyClassifier._predict(self, dataset))
if __debug__:
debug('CLFTREE',
'Predictions %s',
(clf_predictions))
# assure that predictions are indexes, ie int
clf_predictions = clf_predictions.astype(int)
# now for predictions pointing to specific groups go into
# corresponding one
# defer initialization since dtype would depend on predictions
predictions = None
for pred_group in set(clf_predictions):
gk = index2group[pred_group]
clf_ = clfs[gk]
group_indexes = (clf_predictions == pred_group)
if __debug__:
debug('CLFTREE',
'Predicting for group %s using %s on %d samples',
(gk, clf_, np.sum(group_indexes)))
if clf_ is None:
p = groups[gk][0] # our only label
else:
p = clf_.predict(dataset[group_indexes])
if predictions is None:
predictions = np.zeros((len(dataset),),
dtype=np.asanyarray(p).dtype)
predictions[group_indexes] = p
return predictions
class BinaryClassifier(ProxyClassifier):
"""`ProxyClassifier` which maps set of two labels into +1 and -1
"""
__sa_class__ = BinaryClassifierSensitivityAnalyzer
def __init__(self, clf, poslabels, neglabels, **kwargs):
"""
Parameters
----------
clf : Classifier
classifier to use
poslabels : list
list of labels which are treated as +1 category
neglabels : list
list of labels which are treated as -1 category
"""
ProxyClassifier.__init__(self, clf, **kwargs)
# Handle labels
sposlabels = set(poslabels)
sneglabels = set(neglabels)
# TODO: move to use AttributeMap
#self._attrmap = AttributeMap(dict([(l, -1) for l in sneglabels] +
# [(l, +1) for l in sposlabels]))
# check if there is no overlap
overlap = sposlabels.intersection(sneglabels)
if len(overlap)>0:
raise ValueError("Sets of positive and negative labels for " +
"BinaryClassifier must not overlap. Got overlap " %
overlap)
self.__poslabels = list(sposlabels)
self.__neglabels = list(sneglabels)
# define what values will be returned by predict: if there is
# a single label - return just it alone, otherwise - whole
# list
# Such approach might come useful if we use some classifiers
# over different subsets of data with some voting later on
# (1-vs-therest?)
if len(self.__poslabels) > 1:
self.__predictpos = self.__poslabels
else:
self.__predictpos = self.__poslabels[0]
if len(self.__neglabels) > 1:
self.__predictneg = self.__neglabels
else:
self.__predictneg = self.__neglabels[0]
@property
def poslabels(self):
return self.__poslabels
@property
def neglabels(self):
return self.__neglabels
def __repr__(self, prefixes=[]):
prefix = "poslabels=%s, neglabels=%s" % (
repr(self.__poslabels), repr(self.__neglabels))
return super(BinaryClassifier, self).__repr__([prefix] + prefixes)
def _train(self, dataset):
"""Train `BinaryClassifier`
"""
targets_sa_name = self.get_space()
idlabels = [(x, +1) for x in get_samples_by_attr(dataset, targets_sa_name,
self.__poslabels)] + \
[(x, -1) for x in get_samples_by_attr(dataset, targets_sa_name,
self.__neglabels)]
# XXX we have to sort ids since at the moment Dataset.select_samples
# doesn't take care about order
idlabels.sort()
# If we need all samples, why simply not perform on original
# data, an just store/restore labels. But it really should be done
# within Dataset.select_samples
if len(idlabels) == dataset.nsamples \
and [x[0] for x in idlabels] == range(dataset.nsamples):
# the last condition is not even necessary... just overly
# cautious
datasetselected = dataset.copy(deep=False) # no selection is needed
if __debug__:
debug('CLFBIN',
"Created shallow copy with %d samples for binary "
"classification among labels %s/+1 and %s/-1",
(dataset.nsamples, self.__poslabels, self.__neglabels))
else:
datasetselected = dataset[[ x[0] for x in idlabels ]]
if __debug__:
debug('CLFBIN',
"Selected %d samples out of %d samples for binary "
"classification among labels %s/+1 and %s/-1. Selected %s",
(len(idlabels), dataset.nsamples,
self.__poslabels, self.__neglabels, datasetselected))
# adjust the labels
datasetselected.sa[targets_sa_name].value = [ x[1] for x in idlabels ]
# now we got a dataset with only 2 labels
if __debug__:
assert(set(datasetselected.sa[targets_sa_name].unique) ==
set([-1, 1]))
self.clf.train(datasetselected)
def _predict(self, dataset):
"""Predict the labels for a given `dataset`
Predicts using binary classifier and spits out list (for each sample)
where with either poslabels or neglabels as the "label" for the sample.
If there was just a single label within pos or neg labels then it would
return not a list but just that single label.
"""
binary_predictions = ProxyClassifier._predict(self, dataset)
self.ca.estimates = binary_predictions
predictions = [ {-1: self.__predictneg,
+1: self.__predictpos}[x] for x in binary_predictions]
self.ca.predictions = predictions
return predictions
class MulticlassClassifier(CombinedClassifier):
"""`CombinedClassifier` to perform multiclass using a list of
`BinaryClassifier`.
such as 1-vs-1 (ie in pairs like libsvm doesn) or 1-vs-all (which
is yet to think about)
"""
def __init__(self, clf, bclf_type="1-vs-1", **kwargs):
"""Initialize the instance
Parameters
----------
clf : Classifier
classifier based on which multiple classifiers are created
for multiclass
bclf_type
"1-vs-1" or "1-vs-all", determines the way to generate binary
classifiers
"""
CombinedClassifier.__init__(self, **kwargs)
self.__clf = clf
"""Store sample instance of basic classifier"""
# adhere to slave classifier capabilities
if clf is not None:
self.__tags__ += clf.__tags__
if not 'multiclass' in self.__tags__:
self.__tags__ += ['multiclass']
# Some checks on known ways to do multiclass
if bclf_type == "1-vs-1":
pass
elif bclf_type == "1-vs-all": # TODO
raise NotImplementedError
else:
raise ValueError, \
"Unknown type of classifier %s for " % bclf_type + \
"BoostedMulticlassClassifier"
self.__bclf_type = bclf_type
# XXX fix it up a bit... it seems that MulticlassClassifier should
# be actually ProxyClassifier and use BoostedClassifier internally
def __repr__(self, prefixes=[]):
prefix = "bclf_type=%s, clf=%s" % (repr(self.__bclf_type),
repr(self.__clf))
return super(MulticlassClassifier, self).__repr__([prefix] + prefixes)
def _train(self, dataset):
"""Train classifier
"""
targets_sa_name = self.get_space()
# construct binary classifiers
ulabels = dataset.sa[targets_sa_name].unique
if self.__bclf_type == "1-vs-1":
# generate pairs and corresponding classifiers
biclfs = []
for i in xrange(len(ulabels)):
for j in xrange(i+1, len(ulabels)):
clf = self.__clf.clone()
biclfs.append(
BinaryClassifier(
clf,
poslabels=[ulabels[i]], neglabels=[ulabels[j]]))
if __debug__:
debug("CLFMC", "Created %d binary classifiers for %d labels",
(len(biclfs), len(ulabels)))
self.clfs = biclfs
elif self.__bclf_type == "1-vs-all":
raise NotImplementedError
# perform actual training
CombinedClassifier._train(self, dataset)
class SplitClassifier(CombinedClassifier):
"""`BoostedClassifier` to work on splits of the data
"""
"""
TODO: SplitClassifier and MulticlassClassifier have too much in
common -- need to refactor: just need a splitter which would
split dataset in pairs of class labels. MulticlassClassifier
does just a tiny bit more which might be not necessary at
all: map sets of labels into 2 categories...
"""
stats = ConditionalAttribute(enabled=False,
doc="Resultant confusion whenever classifier trained " +
"on 1 part and tested on 2nd part of each split")
splits = ConditionalAttribute(enabled=False, doc=
"""Store the actual splits of the data. Can be memory expensive""")
# ??? couldn't be training_stats since it has other meaning
# here, BUT it is named so within CrossValidatedTransferError
# -- unify
# decided to go with overriding semantics tiny bit. For split
# classifier training_stats would correspond to summary
# over training errors across all splits. Later on if need comes
# we might want to implement global_training_stats which would
# correspond to overall confusion on full training dataset as it is
# done in base Classifier
#global_training_stats = ConditionalAttribute(enabled=False,
# doc="Summary over training confusions acquired at each split")
def __init__(self, clf, partitioner=NFoldPartitioner(),
splitter=Splitter('partitions', count=2), **kwargs):
"""Initialize the instance
Parameters
----------
clf : Classifier
classifier based on which multiple classifiers are created
for multiclass
splitter : Splitter
`Splitter` to use to split the dataset prior training
"""
CombinedClassifier.__init__(self, **kwargs)
self.__clf = clf
"""Store sample instance of basic classifier"""
if isinstance(splitter, type):
raise ValueError, \
"Please provide an instance of a splitter, not a type." \
" Got %s" % splitter
self.__partitioner = partitioner
self.__splitter = splitter
def _train(self, dataset):
"""Train `SplitClassifier`
"""
targets_sa_name = self.get_space()
# generate pairs and corresponding classifiers
bclfs = []
# local binding
ca = self.ca
clf_template = self.__clf
if ca.is_enabled('stats'):
ca.stats = clf_template.__summary_class__()
if ca.is_enabled('training_stats'):
clf_template.ca.enable(['training_stats'])
ca.training_stats = clf_template.__summary_class__()
clf_hastestdataset = hasattr(clf_template, 'testdataset')
# for proper and easier debugging - first define classifiers and then
# train them
for split in self.__partitioner.get_partition_specs(dataset):
if __debug__:
debug("CLFSPL_", "Deepcopying %s for %s",
(clf_template, self))
clf = clf_template.clone()
bclfs.append(clf)
self.clfs = bclfs
self.ca.splits = []
for i, pset in enumerate(self.__partitioner.generate(dataset)):
if __debug__:
debug("CLFSPL", "Training classifier for split %d", (i,))
# split partitioned dataset
split = [d for d in self.__splitter.generate(pset)]
if ca.is_enabled("splits"):
self.ca.splits.append(split)
clf = self.clfs[i]
# assign testing dataset if given classifier can digest it
if clf_hastestdataset:
clf.testdataset = split[1]
clf.train(split[0])
# unbind the testdataset from the classifier
if clf_hastestdataset:
clf.testdataset = None
if ca.is_enabled("stats"):
predictions = clf.predict(split[1])
self.ca.stats.add(split[1].sa[targets_sa_name].value,
predictions,
clf.ca.get('estimates', None))
if __debug__:
dact = debug.active
if 'CLFSPL_' in dact:
debug('CLFSPL_', 'Split %d:\n%s',
(i, self.ca.stats))
elif 'CLFSPL' in dact:
debug('CLFSPL', 'Split %d error %.2f%%',
(i, self.ca.stats.summaries[-1].error))
if ca.is_enabled("training_stats"):
# XXX this is broken, as it cannot deal with not yet set ca
ca.training_stats += clf.ca.training_stats
@group_kwargs(prefixes=['slave_'], passthrough=True)
def get_sensitivity_analyzer(self, slave_kwargs={}, **kwargs):
"""Return an appropriate SensitivityAnalyzer for `SplitClassifier`
Parameters
----------
combiner
If not provided, `first_axis_mean` is assumed
"""
return BoostedClassifierSensitivityAnalyzer(
self, sa_attr='splits',
analyzer=self.__clf.get_sensitivity_analyzer(
**_dont_force_slaves(slave_kwargs)),
**kwargs)
partitioner = property(fget=lambda x:x.__partitioner,
doc="Partitioner used by SplitClassifier")
splitter = property(fget=lambda x:x.__splitter,
doc="Splitter used by SplitClassifier")
class MappedClassifier(ProxyClassifier):
"""`ProxyClassifier` which uses some mapper prior training/testing.
`MaskMapper` can be used just a subset of features to
train/classify.
Having such classifier we can easily create a set of classifiers
for BoostedClassifier, where each classifier operates on some set
of features, e.g. set of best spheres from SearchLight, set of
ROIs selected elsewhere. It would be different from simply
applying whole mask over the dataset, since here initial decision
is made by each classifier and then later on they vote for the
final decision across the set of classifiers.
"""
__sa_class__ = MappedClassifierSensitivityAnalyzer
def __init__(self, clf, mapper, **kwargs):
"""Initialize the instance
Parameters
----------
clf : Classifier
classifier based on which mask classifiers is created
mapper
whatever `Mapper` comes handy
"""
ProxyClassifier.__init__(self, clf, **kwargs)
self.__mapper = mapper
"""mapper to help us our with prepping data to
training/classification"""
def _train(self, dataset):
"""Train `MappedClassifier`
"""
# first train the mapper
# XXX: should training be done using whole dataset or just samples
# YYY: in some cases labels might be needed, thus better full dataset
self.__mapper.train(dataset)
# for train() we have to provide dataset -- not just samples to train!
wdataset = dataset.get_mapped(self.__mapper)
if __debug__:
debug('CLF', "Training %s having mapped dataset into %s",
(self, wdataset))
ProxyClassifier._train(self, wdataset)
def _untrain(self):
"""Untrain `FeatureSelectionClassifier`
Has to untrain any known classifier
"""
# untrain the mapper
if self.__mapper is not None:
self.__mapper.untrain()
# let base class untrain as well
super(MappedClassifier, self)._untrain()
def _predict(self, dataset):
"""Predict using `MappedClassifier`
"""
return ProxyClassifier._predict(self, self.__mapper.forward(dataset))
def __str__(self):
return _str(self, '%s-%s' % (self.mapper, self.clf))
mapper = property(lambda x:x.__mapper, doc="Used mapper")
class FeatureSelectionClassifier(MappedClassifier):
"""This is nothing but a `MappedClassifier`.
This class is only kept for (temporary) compatibility with old code.
"""
__tags__ = [ 'does_feature_selection', 'meta' ]
class RegressionAsClassifier(ProxyClassifier):
"""Allows to use arbitrary regression for classification.
Possible usecases:
Binary Classification
Any regression could easily be extended for binary
classification. For instance using labels -1 and +1, regression
results are quantized into labels depending on their signs
Multiclass Classification
Although most of the time classes are not ordered and do not
have a corresponding distance matrix among them it might often
be the case that there is a hypothesis that classes could be
well separated in a projection to single dimension (non-linear
manifold, or just linear projection). For such use regression
might provide necessary means of classification
"""
distances = ConditionalAttribute(enabled=False,
doc="Distances obtained during prediction")
__sa_class__ = RegressionAsClassifierSensitivityAnalyzer
def __init__(self, clf, centroids=None, distance_measure=None, **kwargs):
"""
Parameters
----------
clf : Classifier XXX Should become learner
Regression to be used as a classifier. Although it would
accept any Learner, only providing regressions would make
sense.
centroids : None or dict of (float or iterable)
Hypothesis or prior information on location/distance of
centroids for each category, provide them. If None -- during
training it will choose equidistant points starting from 0.0.
If dict -- keys should be a superset of labels of dataset
obtained during training and each value should be numeric value
or iterable if centroids are multidimensional and regression
can do multidimensional regression.
distance_measure : function or None
What distance measure to use to find closest class label
from continuous estimates provided by regression. If None,
will use Cartesian distance.
"""
ProxyClassifier.__init__(self, clf, **kwargs)
self.centroids = centroids
self.distance_measure = distance_measure
# Adjust tags which were copied from slave learner
if self.__is_regression__:
self.__tags__.pop(self.__tags__.index('regression'))
# We can do any number of classes, although in most of the scenarios
# multiclass performance would suck, unless there is a strong
# hypothesis
self.__tags__ += ['binary', 'multiclass', 'regression_based']
# XXX No support for retrainable in RegressionAsClassifier yet
if 'retrainable' in self.__tags__:
self.__tags__.remove('retrainable')
# Pylint/user friendliness
#self._trained_ul = None
self._trained_attrmap = None
self._trained_centers = None
def __repr__(self, prefixes=[]):
if self.centroids is not None:
prefixes = prefixes + ['centroids=%r'
% self.centroids]
if self.distance_measure is not None:
prefixes = prefixes + ['distance_measure=%r'
% self.distance_measure]
return super(RegressionAsClassifier, self).__repr__(prefixes)
def _train(self, dataset):
targets_sa_name = self.get_space()
targets_sa = dataset.sa[targets_sa_name]
# May be it is an advanced one needing training.
if hasattr(self.distance_measure, 'train'):
self.distance_measure.train(dataset)
# Centroids
ul = dataset.sa[targets_sa_name].unique
if self.centroids is None:
# setup centroids -- equidistant points
# XXX we might preferred -1/+1 for binary...
centers = np.arange(len(ul), dtype=float)
else:
# verify centroids and assign
if not set(self.centroids.keys()).issuperset(ul):
raise ValueError, \
"Provided centroids with keys %s do not cover all " \
"labels provided during training: %s" \
% (self.centroids.keys(), ul)
# override with superset
ul = self.centroids.keys()
centers = np.array([self.centroids[k] for k in ul])
#self._trained_ul = ul
# Map labels into indexes (not centers)
# since later on we would need to get back (see ??? below)
self._trained_attrmap = AttributeMap(
map=dict([(l, i) for i,l in enumerate(ul)]),
mapnumeric=True)
self._trained_centers = centers
# Create a shallow copy of dataset, and override labels
# TODO: we could just bind .a, .fa, and copy only .sa
dataset_relabeled = dataset.copy(deep=False)
# ???: may be we could just craft a monster attrmap
# which does min distance search upon to_literal ?
dataset_relabeled.sa[targets_sa_name].value = \
self._trained_attrmap.to_numeric(targets_sa.value)
ProxyClassifier._train(self, dataset_relabeled)
def _predict(self, dataset):
# TODO: Probably we should forwardmap labels for target
# dataset so slave has proper statistics attached
self.ca.estimates = regr_predictions \
= ProxyClassifier._predict(self, dataset)
# Local bindings
#ul = self._trained_ul
attrmap = self._trained_attrmap
centers = self._trained_centers
distance_measure = self.distance_measure
if distance_measure is None:
distance_measure = cartesian_distance
# Compute distances
self.ca.distances = distances \
= np.array([[distance_measure(s, c) for c in centers]
for s in regr_predictions])
predictions = attrmap.to_literal(np.argmin(distances, axis=1))
if __debug__:
debug("CLF_", "Converted regression distances %s "
"into labels %s for %s", (distances, predictions, self))
return predictions
def _set_retrainable(self, value, **kwargs):
if value:
raise NotImplementedError, \
"RegressionAsClassifier wrappers are not yet retrainable"
ProxyClassifier._set_retrainable(self, value, **kwargs)
|