/usr/share/pyshared/mvpa2/clfs/mass.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Generic wrappers for learners (classifiers) provided by R's MASS
Highly experimental and ad-hoc -- primary use was to verify LDA/QDA
results, thus not included in the mvpa2.suite ATM.
"""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.base import warning, externals
from mvpa2.base.state import ConditionalAttribute
from mvpa2.clfs.base import Classifier, accepts_dataset_as_samples
from mvpa2.base.learner import FailedToTrainError, FailedToPredictError
# do conditional to be able to build module reference
if externals.exists('mass', raise_=True):
import rpy2.robjects
import rpy2.robjects.numpy2ri
if hasattr(rpy2.robjects.numpy2ri,'activate'):
rpy2.robjects.numpy2ri.activate()
RRuntimeError = rpy2.robjects.rinterface.RRuntimeError
r = rpy2.robjects.r
r.library('MASS')
from mvpa2.support.rpy2_addons import Rrx, Rrx2
class MASSLearnerAdapter(Classifier):
"""Generic adapter for instances of learners provided by R's MASS
Provides basic adaptation of interface for classifiers from MASS
library (e.g. QDA, LDA), by adapting interface.
Examples
--------
>>> if externals.exists('mass'):
... from mvpa2.testing.datasets import datasets
... mass_qda = MASSLearnerAdapter('qda', tags=['non-linear', 'multiclass'], enable_ca=['posterior'])
... mass_qda.train(datasets['uni2large'])
... mass_qda.predict(datasets['uni2large']) # doctest: +SKIP
"""
__tags__ = ['mass', 'rpy2']
posterior = ConditionalAttribute(enabled=False,
doc='Posterior probabilities if provided by classifier')
def __init__(self, learner, kwargs=None, kwargs_predict=None,
tags=None, **kwargs_):
"""
Parameters
----------
learner : string
kwargs : dict, optional
kwargs_predict : dict, optional
tags : list of string
What additional tags to attach to this classifier. Tags are
used in the queries to classifier or regression warehouses.
"""
self._learner = learner
self._kwargs = kwargs or {}
self._kwargs_predict = kwargs_predict or {}
if tags:
# So we make a per-instance copy
self.__tags__ = self.__tags__ + tags
Classifier.__init__(self, **kwargs_)
def __repr__(self):
"""String representation of `SKLLearnerWrapper`
"""
return Classifier.__repr__(self,
prefixes=[repr(self._learner),
'kwargs=%r' % (self._kwargs,)])
def _train(self, dataset):
"""Train the skl learner using `dataset` (`Dataset`).
"""
targets_sa = dataset.sa[self.get_space()]
targets = targets_sa.value
if not 'regression' in self.__tags__:
targets = self._attrmap.to_numeric(targets)
try:
self._R_model = r[self._learner](
dataset.samples,
targets,
**self._kwargs)
except RRuntimeError, e:
raise FailedToTrainError, \
"Failed to train %s on %s. Got '%s' during call to fit()." \
% (self, dataset, e)
@accepts_dataset_as_samples
def _predict(self, data):
"""Predict using the trained MASS learner
"""
try:
output = r.predict(self._R_model,
data,
**self._kwargs_predict)
# TODO: access everything computed, and assign to
# ca's: res.names
classes = Rrx2(output, 'class')
# TODO: move to helper function to be used generically
if classes.rclass[0] == 'factor':
classes = [int(classes.levels[i-1]) for i in classes]
if 'posterior' in output.names:
self.ca.posterior = np.asarray(Rrx2(output, 'posterior'))
res = np.asarray(classes)
except Exception, e:
raise FailedToPredictError, \
"Failed to predict %s on data of shape %s. Got '%s' during" \
" call to predict()." % (self, data.shape, e)
return res
|