This file is indexed.

/usr/share/pyshared/mvpa2/clfs/mass.py is in python-mvpa2 2.2.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Generic wrappers for learners (classifiers) provided by R's MASS

Highly experimental and ad-hoc -- primary use was to verify LDA/QDA
results, thus not included in the mvpa2.suite ATM.
"""

__docformat__ = 'restructuredtext'

import numpy as np

from mvpa2.base import warning, externals
from mvpa2.base.state import ConditionalAttribute
from mvpa2.clfs.base import Classifier, accepts_dataset_as_samples
from mvpa2.base.learner import FailedToTrainError, FailedToPredictError


# do conditional to be able to build module reference
if externals.exists('mass', raise_=True):
    import rpy2.robjects
    import rpy2.robjects.numpy2ri
    if hasattr(rpy2.robjects.numpy2ri,'activate'):
        rpy2.robjects.numpy2ri.activate()
    RRuntimeError = rpy2.robjects.rinterface.RRuntimeError
    r = rpy2.robjects.r
    r.library('MASS')
    from mvpa2.support.rpy2_addons import Rrx, Rrx2


class MASSLearnerAdapter(Classifier):
    """Generic adapter for instances of learners provided by R's MASS

    Provides basic adaptation of interface for classifiers from MASS
    library (e.g. QDA, LDA), by adapting interface.

    Examples
    --------
    >>> if externals.exists('mass'):
    ...    from mvpa2.testing.datasets import datasets
    ...    mass_qda = MASSLearnerAdapter('qda', tags=['non-linear', 'multiclass'], enable_ca=['posterior'])
    ...    mass_qda.train(datasets['uni2large'])
    ...    mass_qda.predict(datasets['uni2large']) # doctest: +SKIP
    """

    __tags__ = ['mass', 'rpy2']

    posterior = ConditionalAttribute(enabled=False,
        doc='Posterior probabilities if provided by classifier')

    def __init__(self, learner, kwargs=None, kwargs_predict=None,
                 tags=None, **kwargs_):
        """
        Parameters
        ----------
        learner : string
        kwargs : dict, optional
        kwargs_predict : dict, optional
        tags : list of string
          What additional tags to attach to this classifier.  Tags are
          used in the queries to classifier or regression warehouses.
        """

        self._learner = learner

        self._kwargs = kwargs or {}
        self._kwargs_predict = kwargs_predict or {}

        if tags:
            # So we make a per-instance copy
            self.__tags__ = self.__tags__ + tags

        Classifier.__init__(self, **kwargs_)


    def __repr__(self):
        """String representation of `SKLLearnerWrapper`
        """
        return Classifier.__repr__(self,
            prefixes=[repr(self._learner),
                      'kwargs=%r' % (self._kwargs,)])


    def _train(self, dataset):
        """Train the skl learner using `dataset` (`Dataset`).
        """
        targets_sa = dataset.sa[self.get_space()]
        targets = targets_sa.value
        if not 'regression' in self.__tags__:
            targets = self._attrmap.to_numeric(targets)

        try:
            self._R_model = r[self._learner](
                dataset.samples,
                targets,
                **self._kwargs)
        except RRuntimeError, e:
            raise FailedToTrainError, \
                  "Failed to train %s on %s. Got '%s' during call to fit()." \
                  % (self, dataset, e)


    @accepts_dataset_as_samples
    def _predict(self, data):
        """Predict using the trained MASS learner
        """
        try:
            output = r.predict(self._R_model,
                               data,
                               **self._kwargs_predict)
            # TODO: access everything computed, and assign to
            #       ca's: res.names
            classes = Rrx2(output, 'class')
            # TODO: move to helper function to be used generically
            if classes.rclass[0] == 'factor':
                classes = [int(classes.levels[i-1]) for i in classes]
            if 'posterior' in output.names:
                self.ca.posterior = np.asarray(Rrx2(output, 'posterior'))
            res = np.asarray(classes)
        except Exception, e:
            raise FailedToPredictError, \
                  "Failed to predict %s on data of shape %s. Got '%s' during" \
                  " call to predict()." % (self, data.shape, e)

        return res