/usr/share/pyshared/mvpa2/clfs/gpr.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# Copyright (c) 2008 Emanuele Olivetti <emanuele@relativita.com>
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Gaussian Process Regression (GPR)."""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.base import externals, warning
from mvpa2.base.state import ConditionalAttribute
from mvpa2.clfs.base import Classifier, accepts_dataset_as_samples
from mvpa2.base.param import Parameter
from mvpa2.kernels.np import SquaredExponentialKernel, GeneralizedLinearKernel, \
LinearKernel
from mvpa2.measures.base import Sensitivity
from mvpa2.misc.exceptions import InvalidHyperparameterError
from mvpa2.datasets import Dataset, dataset_wizard
if externals.exists("scipy", raise_=True):
from scipy.linalg import cho_solve as SLcho_solve
from scipy.linalg import cholesky as SLcholesky
import scipy.linalg as SL
# Some local binding for bits of speed up
SLAError = SL.basic.LinAlgError
if __debug__:
from mvpa2.base import debug
# Some local bindings for bits of speed up
from numpy import array, asarray
Nlog = np.log
Ndot = np.dot
Ndiag = np.diag
NLAcholesky = np.linalg.cholesky
NLAsolve = np.linalg.solve
NLAError = np.linalg.linalg.LinAlgError
eps64 = np.finfo(np.float64).eps
# Some precomputed items. log is relatively expensive
_halflog2pi = 0.5 * Nlog(2 * np.pi)
def _SLcholesky_autoreg(C, nsteps=None, **kwargs):
"""Simple wrapper around cholesky to incrementally regularize the
matrix until successful computation.
For `nsteps` we boost diagonal 10-fold each time from the
'epsilon' of the respective dtype. If None -- would proceed until
reaching 1.
"""
if nsteps is None:
nsteps = -int(np.floor(np.log10(np.finfo(float).eps)))
result = None
for step in xrange(nsteps):
epsilon_value = (10**step) * np.finfo(C.dtype).eps
epsilon = epsilon_value * np.eye(C.shape[0])
try:
result = SLcholesky(C + epsilon, lower=True)
except SLAError, e:
warning("Cholesky decomposition lead to failure: %s. "
"As requested, performing auto-regularization but "
"for better control you might prefer to regularize "
"yourself by providing lm parameter to GPR" % e)
if step < nsteps-1:
if __debug__:
debug("GPR", "Failed to obtain cholesky on "
"auto-regularization step %d value %g. Got %s."
" Boosting lambda more to reg. C."
% (step, epsilon_value, e))
continue
else:
raise
if result is None:
# no loop was done for some reason
result = SLcholesky(C, lower=True)
return result
class GPR(Classifier):
"""Gaussian Process Regression (GPR).
"""
predicted_variances = ConditionalAttribute(enabled=False,
doc="Variance per each predicted value")
log_marginal_likelihood = ConditionalAttribute(enabled=False,
doc="Log Marginal Likelihood")
log_marginal_likelihood_gradient = ConditionalAttribute(enabled=False,
doc="Log Marginal Likelihood Gradient")
__tags__ = [ 'gpr', 'regression', 'retrainable' ]
# NOTE XXX Parameters of the classifier. Values available as
# clf.parameter or clf.params.parameter, or as
# clf.params['parameter'] (as the full Parameter object)
#
# __doc__ and __repr__ for class is conviniently adjusted to
# reflect values of those params
# Kernel machines/classifiers should be refactored also to behave
# the same and define kernel parameter appropriately... TODO, but SVMs
# already kinda do it nicely ;-)
sigma_noise = Parameter(0.001, allowedtype='float', min=1e-10,
doc="the standard deviation of the gaussian noise.")
# XXX For now I don't introduce kernel parameter since yet to unify
# kernel machines
#kernel = Parameter(None, allowedtype='Kernel',
# doc="Kernel object defining the covariance between instances. "
# "(Defaults to KernelSquaredExponential if None in arguments)")
lm = Parameter(None, min=0.0, allowedtype='None or float',
doc="""The regularization term lambda.
Increase this when the kernel matrix is not positive definite. If None,
some regularization will be provided upon necessity""")
def __init__(self, kernel=None, **kwargs):
"""Initialize a GPR regression analysis.
Parameters
----------
kernel : Kernel
a kernel object defining the covariance between instances.
(Defaults to SquaredExponentialKernel if None in arguments)
"""
# init base class first
Classifier.__init__(self, **kwargs)
# It does not make sense to calculate a confusion matrix for a GPR
# XXX it does ;) it will be a RegressionStatistics actually ;-)
# So if someone desires -- let him have it
# self.ca.enable('training_stats', False)
# set kernel:
if kernel is None:
kernel = SquaredExponentialKernel()
debug("GPR",
"No kernel was provided, falling back to default: %s"
% kernel)
self.__kernel = kernel
# append proper clf_internal depending on the kernel
# TODO: add "__tags__" to kernels since the check
# below does not scale
if isinstance(kernel, GeneralizedLinearKernel) or \
isinstance(kernel, LinearKernel):
self.__tags__ += ['linear']
else:
self.__tags__ += ['non-linear']
if externals.exists('openopt') \
and not 'has_sensitivity' in self.__tags__:
self.__tags__ += ['has_sensitivity']
# No need to initialize conditional attributes. Unless they got set
# they would raise an exception self.predicted_variances =
# None self.log_marginal_likelihood = None
self._init_internals()
pass
def _init_internals(self):
"""Reset some internal variables to None.
To be used in constructor and untrain()
"""
self._train_fv = None
self._labels = None
self._km_train_train = None
self._train_labels = None
self._alpha = None
self._L = None
self._LL = None
# XXX EO: useful for model selection but not working in general
# self.__kernel.reset()
pass
def __repr__(self):
"""String summary of the object
"""
return super(GPR, self).__repr__(
prefixes=['kernel=%s' % self.__kernel])
def compute_log_marginal_likelihood(self):
"""
Compute log marginal likelihood using self.train_fv and self.targets.
"""
if __debug__:
debug("GPR", "Computing log_marginal_likelihood")
self.ca.log_marginal_likelihood = \
-0.5*Ndot(self._train_labels, self._alpha) - \
Nlog(self._L.diagonal()).sum() - \
self._km_train_train.shape[0] * _halflog2pi
return self.ca.log_marginal_likelihood
def compute_gradient_log_marginal_likelihood(self):
"""Compute gradient of the log marginal likelihood. This
version use a more compact formula provided by Williams and
Rasmussen book.
"""
# XXX EO: check whether the precomputed self.alpha self.Kinv
# are actually the ones corresponding to the hyperparameters
# used to compute this gradient!
# YYY EO: currently this is verified outside gpr.py but it is
# not an efficient solution.
# XXX EO: Do some memoizing since it could happen that some
# hyperparameters are kept constant by user request, so we
# don't need (somtimes) to recompute the corresponding
# gradient again. COULD THIS BE TAKEN INTO ACCOUNT BY THE
# NEW CACHED KERNEL INFRASTRUCTURE?
# self.Kinv = np.linalg.inv(self._C)
# Faster:
Kinv = SLcho_solve(self._LL, np.eye(self._L.shape[0]))
alphalphaT = np.dot(self._alpha[:,None], self._alpha[None,:])
tmp = alphalphaT - Kinv
# Pass tmp to __kernel and let it compute its gradient terms.
# This scales up to huge number of hyperparameters:
grad_LML_hypers = self.__kernel.compute_lml_gradient(
tmp, self._train_fv)
grad_K_sigma_n = 2.0*self.params.sigma_noise*np.eye(tmp.shape[0])
# Add the term related to sigma_noise:
# grad_LML_sigma_n = 0.5 * np.trace(np.dot(tmp,grad_K_sigma_n))
# Faster formula: tr(AB) = (A*B.T).sum()
grad_LML_sigma_n = 0.5 * (tmp * (grad_K_sigma_n).T).sum()
lml_gradient = np.hstack([grad_LML_sigma_n, grad_LML_hypers])
self.log_marginal_likelihood_gradient = lml_gradient
return lml_gradient
def compute_gradient_log_marginal_likelihood_logscale(self):
"""Compute gradient of the log marginal likelihood when
hyperparameters are in logscale. This version use a more
compact formula provided by Williams and Rasmussen book.
"""
# Kinv = np.linalg.inv(self._C)
# Faster:
Kinv = SLcho_solve(self._LL, np.eye(self._L.shape[0]))
alphalphaT = np.dot(self._alpha[:,None], self._alpha[None,:])
tmp = alphalphaT - Kinv
grad_LML_log_hypers = \
self.__kernel.compute_lml_gradient_logscale(tmp, self._train_fv)
grad_K_log_sigma_n = 2.0 * self.params.sigma_noise ** 2 * np.eye(Kinv.shape[0])
# Add the term related to sigma_noise:
# grad_LML_log_sigma_n = 0.5 * np.trace(np.dot(tmp, grad_K_log_sigma_n))
# Faster formula: tr(AB) = (A * B.T).sum()
grad_LML_log_sigma_n = 0.5 * (tmp * (grad_K_log_sigma_n).T).sum()
lml_gradient = np.hstack([grad_LML_log_sigma_n, grad_LML_log_hypers])
self.log_marginal_likelihood_gradient = lml_gradient
return lml_gradient
##REF: Name was automagically refactored
def get_sensitivity_analyzer(self, flavor='auto', **kwargs):
"""Returns a sensitivity analyzer for GPR.
Parameters
----------
flavor : str
What sensitivity to provide. Valid values are
'linear', 'model_select', 'auto'.
In case of 'auto' selects 'linear' for linear kernel
and 'model_select' for the rest. 'linear' corresponds to
GPRLinearWeights and 'model_select' to GRPWeights
"""
# XXX The following two lines does not work since
# self.__kernel is instance of LinearKernel and not
# just LinearKernel. How to fix?
# YYY yoh is not sure what is the problem... LinearKernel is actually
# kernel.LinearKernel so everything shoudl be ok
if flavor == 'auto':
flavor = ('model_select', 'linear')\
[int(isinstance(self.__kernel, GeneralizedLinearKernel)
or
isinstance(self.__kernel, LinearKernel))]
if __debug__:
debug("GPR", "Returning '%s' sensitivity analyzer" % flavor)
# Return proper sensitivity
if flavor == 'linear':
return GPRLinearWeights(self, **kwargs)
elif flavor == 'model_select':
# sanity check
if not ('has_sensitivity' in self.__tags__):
raise ValueError, \
"model_select flavor is not available probably " \
"due to not available 'openopt' module"
return GPRWeights(self, **kwargs)
else:
raise ValueError, "Flavor %s is not recognized" % flavor
def _train(self, data):
"""Train the classifier using `data` (`Dataset`).
"""
# local bindings for faster lookup
params = self.params
retrainable = params.retrainable
if retrainable:
newkernel = False
newL = False
_changedData = self._changedData
self._train_fv = train_fv = data.samples
# GRP relies on numerical labels
# yoh: yeah -- GPR now is purely regression so no conversion
# is necessary
train_labels = data.sa[self.get_space()].value
self._train_labels = train_labels
if not retrainable or _changedData['traindata'] \
or _changedData.get('kernel_params', False):
if __debug__:
debug("GPR", "Computing train train kernel matrix")
self.__kernel.compute(train_fv)
self._km_train_train = km_train_train = asarray(self.__kernel)
newkernel = True
if retrainable:
self._km_train_test = None # reset to facilitate recomputation
else:
if __debug__:
debug("GPR", "Not recomputing kernel since retrainable and "
"nothing has changed")
km_train_train = self._km_train_train # reuse
if not retrainable or newkernel or _changedData['params']:
if __debug__:
debug("GPR", "Computing L. sigma_noise=%g" \
% params.sigma_noise)
# XXX it seems that we do not need binding to object, but may be
# commented out code would return?
self._C = km_train_train + \
params.sigma_noise ** 2 * \
np.identity(km_train_train.shape[0], 'd')
# The following decomposition could raise
# np.linalg.linalg.LinAlgError because of numerical
# reasons, due to the too rapid decay of 'self._C'
# eigenvalues. In that case we try adding a small constant
# to self._C, e.g. epsilon=1.0e-20. It should be a form of
# Tikhonov regularization. This is equivalent to adding
# little white gaussian noise to data.
#
# XXX EO: how to choose epsilon?
#
# Cholesky decomposition is provided by three different
# NumPy/SciPy routines (fastest first):
# 1) self._LL = scipy.linalg.cho_factor(self._C, lower=True)
# self._L = L = np.tril(self._LL[0])
# 2) self._L = scipy.linalg.cholesky(self._C, lower=True)
# 3) self._L = numpy.linalg.cholesky(self._C)
# Even though 1 is the fastest we choose 2 since 1 does
# not return a clean lower-triangular matrix (see docstring).
# PBS: I just made it so the KernelMatrix is regularized
# all the time. I figured that if ever you were going to
# use regularization, you would want to set it yourself
# and use the same value for all folds of your data.
# YOH: Ideally so, but in real "use cases" some might have no
# clue, also our unittests (actually clfs_examples) might
# fail without any good reason. So lets return a magic with
# an option to forbid any regularization (if lm is None)
try:
# apply regularization
lm, C = params.lm, self._C
if lm is not None:
epsilon = lm * np.eye(C.shape[0])
self._L = SLcholesky(C + epsilon, lower=True)
else:
# do 10 attempts to raise each time by 10
self._L = _SLcholesky_autoreg(C, nsteps=None, lower=True)
self._LL = (self._L, True)
except SLAError:
raise SLAError("Kernel matrix is not positive, definite. "
"Try increasing the lm parameter.")
pass
newL = True
else:
if __debug__:
debug("GPR", "Not computing L since kernel, data and params "
"stayed the same")
# XXX we leave _alpha being recomputed, although we could check
# if newL or _changedData['targets']
#
if __debug__:
debug("GPR", "Computing alpha")
# L = self._L # reuse
# self._alpha = NLAsolve(L.transpose(),
# NLAsolve(L, train_labels))
# Faster:
self._alpha = SLcho_solve(self._LL, train_labels)
# compute only if the state is enabled
if self.ca.is_enabled('log_marginal_likelihood'):
self.compute_log_marginal_likelihood()
pass
if retrainable:
# we must assign it only if it is retrainable
self.ca.retrained = not newkernel or not newL
if __debug__:
debug("GPR", "Done training")
pass
@accepts_dataset_as_samples
def _predict(self, data):
"""
Predict the output for the provided data.
"""
retrainable = self.params.retrainable
ca = self.ca
if not retrainable or self._changedData['testdata'] \
or self._km_train_test is None:
if __debug__:
debug('GPR', "Computing train test kernel matrix")
self.__kernel.compute(self._train_fv, data)
km_train_test = asarray(self.__kernel)
if retrainable:
self._km_train_test = km_train_test
ca.repredicted = False
else:
if __debug__:
debug('GPR', "Not recomputing train test kernel matrix")
km_train_test = self._km_train_test
ca.repredicted = True
predictions = Ndot(km_train_test.transpose(), self._alpha)
if ca.is_enabled('predicted_variances'):
# do computation only if conditional attribute was enabled
if not retrainable or self._km_test_test is None \
or self._changedData['testdata']:
if __debug__:
debug('GPR', "Computing test test kernel matrix")
self.__kernel.compute(data)
km_test_test = asarray(self.__kernel)
if retrainable:
self._km_test_test = km_test_test
else:
if __debug__:
debug('GPR', "Not recomputing test test kernel matrix")
km_test_test = self._km_test_test
if __debug__:
debug("GPR", "Computing predicted variances")
L = self._L
# v = NLAsolve(L, km_train_test)
# Faster:
piv = np.arange(L.shape[0])
v = SL.lu_solve((L.T, piv), km_train_test, trans=1)
# self.predicted_variances = \
# Ndiag(km_test_test - Ndot(v.T, v)) \
# + self.sigma_noise**2
# Faster formula: np.diag(Ndot(v.T, v)) = (v**2).sum(0):
ca.predicted_variances = Ndiag(km_test_test) - (v ** 2).sum(0) \
+ self.params.sigma_noise ** 2
pass
if __debug__:
debug("GPR", "Done predicting")
ca.estimates = predictions
return predictions
##REF: Name was automagically refactored
def _set_retrainable(self, value, force=False):
"""Internal function : need to set _km_test_test
"""
super(GPR, self)._set_retrainable(value, force)
if force or (value and value != self.params.retrainable):
self._km_test_test = None
def _untrain(self):
super(GPR, self)._untrain()
# XXX might need to take special care for retrainable. later
self._init_internals()
def set_hyperparameters(self, hyperparameter):
"""
Set hyperparameters' values.
Note that 'hyperparameter' is a sequence so the order of its
values is important. First value must be sigma_noise, then
other kernel's hyperparameters values follow in the exact
order the kernel expect them to be.
"""
if hyperparameter[0] < self.params['sigma_noise'].min:
raise InvalidHyperparameterError()
self.params.sigma_noise = hyperparameter[0]
if hyperparameter.size > 1:
self.__kernel.set_hyperparameters(hyperparameter[1:])
pass
return
kernel = property(fget=lambda self:self.__kernel)
pass
class GPRLinearWeights(Sensitivity):
"""`SensitivityAnalyzer` that reports the weights GPR trained
on a given `Dataset`.
In case of LinearKernel compute explicitly the coefficients
of the linear regression, together with their variances (if
requested).
Note that the intercept is not computed.
"""
variances = ConditionalAttribute(enabled=False,
doc="Variances of the weights (for GeneralizedLinearKernel)")
_LEGAL_CLFS = [ GPR ]
def _call(self, dataset):
"""Extract weights from GPR
"""
clf = self.clf
kernel = clf.kernel
train_fv = clf._train_fv
if isinstance(kernel, LinearKernel):
Sigma_p = 1.0
else:
Sigma_p = kernel.params.Sigma_p
weights = Ndot(Sigma_p,
Ndot(train_fv.T, clf._alpha))
if self.ca.is_enabled('variances'):
# super ugly formulas that can be quite surely improved:
tmp = np.linalg.inv(clf._L)
Kyinv = Ndot(tmp.T, tmp)
# XXX in such lengthy matrix manipulations you might better off
# using np.matrix where * is a matrix product
self.ca.variances = Ndiag(
Sigma_p -
Ndot(Sigma_p,
Ndot(train_fv.T,
Ndot(Kyinv,
Ndot(train_fv, Sigma_p)))))
return Dataset(np.atleast_2d(weights))
if externals.exists('openopt'):
from mvpa2.clfs.model_selector import ModelSelector
class GPRWeights(Sensitivity):
"""`SensitivityAnalyzer` that reports the weights GPR trained
on a given `Dataset`.
"""
_LEGAL_CLFS = [ GPR ]
def _call(self, ds_):
"""Extract weights from GPR
.. note:
Input dataset is not actually used. New dataset is
constructed from what is known to the classifier
"""
clf = self.clf
# normalize data:
clf._train_labels = (clf._train_labels - clf._train_labels.mean()) \
/ clf._train_labels.std()
# clf._train_fv = (clf._train_fv-clf._train_fv.mean(0)) \
# /clf._train_fv.std(0)
ds = dataset_wizard(samples=clf._train_fv, targets=clf._train_labels)
clf.ca.enable("log_marginal_likelihood")
ms = ModelSelector(clf, ds)
# Note that some kernels does not have gradient yet!
# XXX Make it initialize to clf's current hyperparameter values
# or may be add ability to specify starting points in the constructor
sigma_noise_initial = 1.0e-5
sigma_f_initial = 1.0
length_scale_initial = np.ones(ds.nfeatures)*1.0e4
# length_scale_initial = np.random.rand(ds.nfeatures)*1.0e4
hyp_initial_guess = np.hstack([sigma_noise_initial,
sigma_f_initial,
length_scale_initial])
fixedHypers = array([0]*hyp_initial_guess.size, dtype=bool)
fixedHypers = None
problem = ms.max_log_marginal_likelihood(
hyp_initial_guess=hyp_initial_guess,
optimization_algorithm="scipy_lbfgsb",
ftol=1.0e-3, fixedHypers=fixedHypers,
use_gradient=True, logscale=True)
if __debug__ and 'GPR_WEIGHTS' in debug.active:
problem.iprint = 1
lml = ms.solve()
weights = 1.0/ms.hyperparameters_best[2:] # weight = 1/length_scale
if __debug__:
debug("GPR",
"%s, train: shape %s, labels %s, min:max %g:%g, "
"sigma_noise %g, sigma_f %g" %
(clf, clf._train_fv.shape, np.unique(clf._train_labels),
clf._train_fv.min(), clf._train_fv.max(),
ms.hyperparameters_best[0], ms.hyperparameters_best[1]))
return weights
|